×

zbMATH — the first resource for mathematics

A boundary control problem for a possibly singular phase field system with dynamic boundary conditions. (English) Zbl 1327.49007
Summary: This paper deals with an optimal control problem related to a phase field system of Caginalp type with a dynamic boundary condition for the temperature. The control placed in the dynamic boundary condition acts on a part of the boundary. The analysis carried out in this paper proves the existence of an optimal control for a general class of potentials, possibly singular. The study includes potentials for which the derivatives may not exist, these being replaced by well-defined subdifferentials. Under some stronger assumptions on the structure parameters and on the potentials (namely for the regular and the logarithmic case having single-valued derivatives), first order necessary optimality conditions are derived and expressed in terms of the boundary trace of the first adjoint variable.

MSC:
49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
49J52 Nonsmooth analysis
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Barbu, V., Nonlinear differential equations of monotone types in Banach spaces, (2010), Springer New York · Zbl 1197.35002
[2] Barbu, V.; Bernardi, M. L.; Colli, P.; Gilardi, G., Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109, 557-585, (2001) · Zbl 1008.49003
[3] Barbu, V.; Favini, A.; Marinoschi, G., Nonlinear parabolic flows with dynamic flux on the boundary, J. Differential Equations, 258, 2160-2195, (2015) · Zbl 1317.35113
[4] Boldrini, J. L.; Caretta, B. M.C.; Fernández-Cara, E., Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23, 49-75, (2010) · Zbl 1182.49020
[5] Brezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans LES espaces de Hilbert, North-Holland Math. Stud., vol. 5, (1973), North-Holland Amsterdam · Zbl 0252.47055
[6] Brokate, M.; Sprekels, J., Hysteresis and phase transitions, (1996), Springer New York · Zbl 0951.74002
[7] Caginalp, G., An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal., 92, 205-245, (1986) · Zbl 0608.35080
[8] Colli, P.; Farshbaf-Shaker, M. H.; Sprekels, J., A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71, 1-24, (2015) · Zbl 1309.74054
[9] Colli, P.; Fukao, T., The Allen-Cahn equation with dynamic boundary conditions and mass constraints, Math. Methods Appl. Sci., (2014), pp. 1-23
[10] Colli, P.; Fukao, T., Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429, 1190-1213, (2015) · Zbl 1327.35149
[11] Colli, P.; Gilardi, G.; Marinoschi, G.; Rocca, E., Optimal control for a phase field system with a possibly singular potential, (2014), pp. 1-20
[12] Colli, P.; Gilardi, G.; Podio-Guidugli, P.; Sprekels, J., Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24, 437-459, (2012) · Zbl 1260.49031
[13] Colli, P.; Gilardi, G.; Sprekels, J., Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80, 119-149, (2012) · Zbl 1331.49028
[14] Colli, P.; Gilardi, G.; Sprekels, J., On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419, 972-994, (2014) · Zbl 1295.35248
[15] Colli, P.; Gilardi, G.; Sprekels, J., A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., (2015), pp. 1-18
[16] Colli, P.; Marinoschi, G.; Rocca, E., Sharp interface control in a Penrose-fife model, ESAIM Control Optim. Calc. Var., (2014), pp. 1-33
[17] Colli, P.; Sprekels, J., Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53, 213-234, (2015) · Zbl 1382.74089
[18] Goldstein, G. R., Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11, 457-480, (2006) · Zbl 1107.35010
[19] Grasselli, M.; Miranville, A.; Schimperna, G., The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28, 67-98, (2010) · Zbl 1194.35074
[20] Hoffmann, K.-H.; Jiang, L. S., Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13, 11-27, (1992) · Zbl 0724.49003
[21] Hoffmann, K.-H.; Kenmochi, N.; Kubo, M.; Yamazaki, N., Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17, 305-336, (2007) · Zbl 1287.49005
[22] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasilinear equations of parabolic type, Trans. Amer. Math. Soc., vol. 23, (1968), Amer. Math. Soc. Providence, RI
[23] Lefter, C.; Sprekels, J., Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17, 181-194, (2007) · Zbl 1284.49028
[24] Lions, J.-L., Équations différentielles opérationnelles et problèmes aux limites, Grundlehren, vol. 111, (1961), Springer-Verlag Berlin · Zbl 0098.31101
[25] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[26] Shirakawa, K.; Yamazaki, N., Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18, 309-350, (2013) · Zbl 1302.49007
[27] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl. (4), 146, 65-96, (1987) · Zbl 0629.46031
[28] Sprekels, J.; Zheng, S., Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1, 113-125, (1992) · Zbl 0766.49021
[29] Zheng, J.; Liu, J.; Liu, H., State-constrained optimal control of phase-field equations with obstacle, Bound. Value Probl., 2013, 234, (2013) · Zbl 1292.49025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.