×

Coisotropic rigidity and \(C^0\)-symplectic geometry. (English) Zbl 1327.53109

The article’s main result proves that a symplectic homeomorphism preserves coisotropic submanifolds and their characteristic foliations. To prove it the authors establish a \(C^{0}\)-dynamical property of coisotropic submanifolds by proving the uniqueness of generators for continuous analogues of Hamiltonian flows; by doing so they generalize a fundamental theorem in \(C^{0}\)-Hamiltonian dynamics. The main results generalizes the Gromov-Eliashberg theorem and demonstrate previously known rigidity results (i) on Lagrangians, by F. Laudenbach and J. C. Sikorav [Int. Math. Res. Not. 1994, No. 4, 161–168 (1994; Zbl 0812.53031)] and (ii) on characteristics of hypersurfaces by E. Opshtein [Ann. Sci. Éc. Norm. Supér. (4) 42, No. 5, 857–864 (2009; Zbl 1186.53054)]. Indeed, it is shown that these results are manifestations of a single rigidity phenomenon.
They define symplectic homeomorphisms as \(C^{0}\)-limit of symplectomorphisms. The definition is well posed thanks to the Gromov-Eliashberg theorem [M. Gromov, Partial differential relations. Berlin etc.: Springer-Verlag (1986; Zbl 0651.53001)] stating that a diffemorphism which is a \(C^{0}\)-limit of symplectomorphisms is symplectic. A submanifold \(C\) of a symplectic manifold \((M,\omega)\) is called coisotropic if for all \(p\in C\), \((T_{p}C)^{\omega}\subset T_{p}C\), where \((T_{p}C)^{\omega}\) denotes the symplectic orthogonal of \(T_{p}C\). For instance, hypersurfaces and Lagrangians are coisotropic. A coisotropic submanifold carries a natural foliation \(\mathcal{F}\) which integrates the distribution \((T_{p}C)^{\omega}\); \(\mathcal{F}\) is called the characteristic foliation of \(C\).
{Main Theorem}. Let \(C\) be a smooth coisotropic submanifold of a symplectic manifold \((M,\omega)\). Let \(U\) be an open subset of \(M\), and let \(\theta:U\rightarrow V\) be a symplectic homeomorphism. If \(\theta(C\cap U)\) is smooth, then it is isotropic. Furthermore, \(\theta\) maps the characteristic foliation of \(C\cap U\) to that of \(\theta(C\cap U)\).

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)

References:

[1] J.-F. Barraud and O. Cornea, Lagrangian intersections and the Serre spectral sequence , Ann. of Math. (2) 166 (2007), 657-722. · Zbl 1141.53078 · doi:10.4007/annals.2007.166.657
[2] M. S. Borman and M. McLean, Bounding Lagrangian widths via geodesic paths , Compos. Math. 150 (2014), 2143-2183. · Zbl 1322.53082 · doi:10.1112/S0010437X14007465
[3] L. Buhovsky and S. Seyfaddini, Uniqueness of generating Hamiltonians for topological Hamiltonian flows , J. Symplectic Geom. 11 (2013), 37-52. · Zbl 1282.37030 · doi:10.4310/JSG.2013.v11.n1.a3
[4] F. Charette, A geometric refinement of a theorem of Chekanov , J. Symplectic Geom. 10 (2012), 475-491. · Zbl 1256.53050 · doi:10.4310/JSG.2012.v10.n3.a6
[5] Y. Eliashberg and N. Mishachev, Introduction to the \(h\)-principle , Grad. Stud. Math. 48 , Amer. Math. Soc., Providence, 2002. · Zbl 1334.57030
[6] U. Frauenfelder, V. L. Ginzburg, and F. Schlenk, “Energy capacity inequalities via an action selector” in Geometry, Spectral Theory, Groups, and Dynamics , Contemp. Math. 48 , Amer. Math. Soc., Providence, 2005, 129-152. · Zbl 1094.53079 · doi:10.1090/conm/387/07239
[7] V. L. Ginzburg, Coisotropic intersections , Duke Math. J. 140 (2007), 111-163. · Zbl 1129.53062 · doi:10.1215/S0012-7094-07-14014-6
[8] M. J. Gotay, On coisotropic imbeddings of presymplectic manifolds , Proc. Amer. Math. Soc. 84 (1982), 111-114. · Zbl 0476.53020 · doi:10.2307/2043821
[9] M. Gromov, Partial Differential Relations , Ergeb. Math. Grenzgeb. (3) 9 , Springer, Berlin, 1986. · Zbl 0651.53001
[10] V. Humilière, R. Leclercq, and S. Seyfaddini, New energy-capacity-type inequalities and uniqueness of continuous Hamiltonians , to appear in Comment. Math. Helv., preprint, [math.SG]. arXiv:1209.2134 · Zbl 1320.53108 · doi:10.4171/CMH/343
[11] F. Laudenbach and J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds , Internat. Math. Res. Notices 4 (1994), 161-168. · Zbl 0812.53031 · doi:10.1155/S1073792894000176
[12] R. Leclercq, Spectral invariants in Lagrangian Floer theory , J. Mod. Dyn. 2 (2008), 249-286. · Zbl 1153.57021 · doi:10.3934/jmd.2008.2.249
[13] R. Leclercq and F. Zapolsky, Spectral invariants for monotone Lagrangian submanifolds , in preparation.
[14] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics , Math. Appl. 35 , D. Reidel, Dordrecht, 1987. · Zbl 0643.53002
[15] S. Lisi and A. Rieser, Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings , preprint, [math.SG]. arXiv:1312.7334
[16] D. Milinković, On equivalence of two constructions of invariants of Lagrangian submanifolds , Pacific J. Math. 195 (2000), 371-415. · Zbl 1033.53066 · doi:10.2140/pjm.2000.195.371
[17] D. Milinković, Geodesics on the space of Lagrangian submanifolds in cotangent bundles , Proc. Amer. Math. Soc. 129 (2001), 1843-1851. · Zbl 0978.53123 · doi:10.1090/S0002-9939-00-05851-2
[18] A. Monzner, N. Vichery, and F. Zapolsky, Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization , J. Mod. Dyn. 6 (2012), 205-249. · Zbl 1258.53091 · doi:10.3934/jmd.2012.6.205
[19] Y.-G. Oh. Symplectic topology as the geometry of action functional, I: Relative Floer theory on the cotangent bundle , J. Differential Geom. 46 (1997), 499-577. · Zbl 0926.53031
[20] Y.-G. Oh, Locality of continuous Hamiltonian flows and Lagrangian intersections with the conormal of open subsets , J. Gökova Geom. Topol. GGT 1 (2007), 1-32. · Zbl 1181.53075
[21] Y.-G. Oh, Geometry of generating functions and Lagrangian spectral invariants , preprint, [math.SG]. arXiv:1206.4788
[22] Y.-G. Oh and S. Müller, The group of Hamiltonian homeomorphisms and \(C^{0}\)-symplectic topology , J. Symplectic Geom. 5 (2007), 167-219. · Zbl 1144.37033 · doi:10.4310/JSG.2007.v5.n2.a2
[23] E. Opshtein, \(C^{0}\)-rigidity of characteristics in symplectic geometry , Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 857-864. · Zbl 1186.53054 · doi:10.24033/asens.2111
[24] M. Usher, The sharp energy-capacity inequality , Commun. Contemp. Math. 12 (2010), 457-473. · Zbl 1200.53077 · doi:10.1142/S0219199710003889
[25] C. Viterbo, Symplectic topology as the geometry of generating functions , Math. Ann. 292 (1992), 685-710. · Zbl 0735.58019 · doi:10.1007/BF01444643
[26] C. Viterbo, On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows , Int. Math. Res. Not. IMRN 2006 , art. ID 34028. · Zbl 1108.53042 · doi:10.1155/IMRN/2006/34028
[27] C. Viterbo, Symplectic homogenization , preprint, [math.SG]. arXiv:0801.0206
[28] A. Weinstein, Symplectic geometry , Bull. Amer. Math. Soc. (N.S.) 5 (1981), 1-13. · Zbl 0465.58013 · doi:10.1090/S0273-0979-1981-14911-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.