×

Mary Ellen Rudin and monotone normality. (English) Zbl 1327.54003

Summary: This paper focuses on the remarkable contributions that Mary Ellen Rudin made to the study of monotonically normal spaces.

MSC:

54-02 Research exposition (monographs, survey articles) pertaining to general topology
54E20 Stratifiable spaces, cosmic spaces, etc.
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
54-03 History of general topology
01A60 History of mathematics in the 20th century
01A70 Biographies, obituaries, personalia, bibliographies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balogh, Z.; Rudin, M. E., Monotonic normality, Topol. Appl., 47, 115-127 (1992) · Zbl 0769.54022
[2] Bennett, H.; Lutzer, D.; Rudin, M. E., Lines, trees, and branches, Order, 19, 367-384 (2002) · Zbl 1025.54016
[3] Borges, C., Stratifiable spaces, Pac. J. Math., 17, 1-25 (1966) · Zbl 0175.19802
[4] Borges, C., Extension properties of \(K_i\)-spaces, Quest. Answ. Gen. Topol., 7, 81-97 (1989) · Zbl 0725.54013
[5] Buzyakova, R.; Vural, C., Stationary sets in topological and paratopological groups, Houst. J. Math., 40, 267-273 (2014) · Zbl 1300.54052
[6] Cairns, P.; Junnila, H.; Nyikos, P., An application of Mary Ellen Rudin’s solution to Nikiel’s conjecture, Topol. Appl., 195, 26-33 (2015), in this issue · Zbl 1333.54032
[7] Ceder, J. G., Some generalizations of metric spaces, Pac. J. Math., 4, 105-125 (1961) · Zbl 0103.39101
[8] Collins, P., Monotone normality, Topol. Appl., 74, 179-198 (1996) · Zbl 0867.54027
[9] Collins, P.; Gartside, P., Metrization, topological groups, and compacta, (Papers on General Topology and Applications. Papers on General Topology and Applications, Ann. N.Y. Acad. Sci., vol. 806 (1996)), 106-120, New York · Zbl 0886.54022
[10] Creede, G., Concerning semistratifiable spaces, Pac. J. Math., 32, 47-54 (1970) · Zbl 0189.23304
[11] van Dalen, J.; Wattel, E., A topological characterization of ordered spaces, Gen. Topol. Appl., 3, 347-354 (1973) · Zbl 0272.54026
[12] van Douwen, E. K., Simultaneous extensions of continuous functions (1975), Vrije Universiteit Amsterdam, Ph.D. Thesis · Zbl 0309.54013
[13] van Douwen, E. K., Simultaneous linear extension of continuous functions, Gen. Topol. Appl., 5, 297-319 (1975) · Zbl 0309.54013
[14] Engelking, R.; Lutzer, D., Paracompactness in ordered spaces, Fundam. Math., 94, 49-58 (1976) · Zbl 0351.54014
[15] Fleissner, W.; Tkachuk, V.; Yengulalp, L., Every scattered space is subcompact, Topol. Appl., 160, 1305-1312 (2013) · Zbl 1285.54028
[16] Gartside, P., Cardinal invariants of monotonically normal spaces, Topol. Appl., 77, 303-314 (1997) · Zbl 0872.54005
[17] Gartside, P., Monotone normality in products, Topol. Appl., 91, 181-195 (1999) · Zbl 0922.54020
[18] Gartside, P., Nonstratifiability of topological vector spaces, Topol. Appl., 86, 133-140 (1998) · Zbl 0949.54034
[19] Gillman, L.; Henriksen, M., Concerning rings of continuous functions, Trans. Am. Math. Soc., 77, 340-362 (1954) · Zbl 0058.10003
[20] Gruenhage, G., Generalized metric spaces and metrization, (Husek, M.; van Mill, J., Recent Progress in General Topology (1992), North Holland: North Holland Amsterdam), 239-274 · Zbl 0794.54034
[21] Gruenhage, G., Metrizable spaces and generalizations, (Husek, M.; van Mill, J., Recent Progress in General Topology II (2002), Elsevier: Elsevier Amsterdam), 201-226 · Zbl 1029.54036
[22] Gruenhage, G., Generalized metric spaces, (Hart, K. P.; van Mill, J.; Simon, P., Recent Progress in General Topology III (2014), Springer: Springer New York), 471-505 · Zbl 1314.54001
[23] Heath, R., Monotone normality in topological groups, Ser. Math., 3, 13-18 (1989) · Zbl 0694.54025
[24] Heath, R.; Lutzer, D.; Zenor, P., Monotonically normal spaces, Trans. Am. Math. Soc., 155, 481-494 (1973) · Zbl 0269.54009
[25] Hirata, Y.; Kemoto, N.; Yajima, Y., Products of monotonically normal spaces with various special factors, Topol. Appl., 164, 45-86 (2014) · Zbl 1286.54008
[26] Hodel, R., Cardinal functions I, (Kunen, K.; Vaughan, J., Handbook of Set-Theoretic Topology (1984), North Holland), 1-62 · Zbl 0559.54003
[27] Kuratowski, K., Topology, Vol. 1 (1966), Academic Press: Academic Press New York · Zbl 0158.40901
[28] Lutzer, D., Ordered topological spaces, (Reed, G. M., Surveys in General Topology (1980), Academic Press: Academic Press New York), 247-296 · Zbl 0472.54020
[29] Mardesic, S., On the Hahn-Mazurkiewicz problem in non-metric spaces, (General Topology and Its Relations to Modern Analysis and Algebra (1967), Academia Publishers of the Czechoslovak Academy of Sciences: Academia Publishers of the Czechoslovak Academy of Sciences Prague), 248-255 · Zbl 0159.52802
[30] Mardešić, S., Continuous images of linearly ordered continua and compacta, Topol. Appl., 195, 34-49 (2015), in this issue · Zbl 1327.54005
[31] Mayer, J.; Oversteigen, L., Continuum theory, (Husek, M.; van Mill, J., Recent Progress in Topology (1992), North Holland: North Holland Amsterdam), 453-492 · Zbl 0804.54029
[32] Mcintyre, D. W., Compact-calibres of regular and monotonically normal spaces, Int. J. Math. Math. Sci., 29, 209-216 (2002) · Zbl 0993.54003
[33] Michael, E. A., The product of a normal space and a metric space need not be normal, Bull. Am. Math. Soc., 69, 375-376 (1963) · Zbl 0114.38904
[34] Michael, E. A., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compos. Math., 23, 199-214 (1971) · Zbl 0216.44304
[35] van Mill, J., The reduced measure algebra and a \(K_1\)-space which is not \(K_0\), Topol. Appl., 13, 123-132 (1982) · Zbl 0498.54017
[36] van Mill, J.; Wattel, E., Orderability from selections: another solution of the orderability problem, Fundam. Math., 121, 219-229 (1984) · Zbl 0557.54011
[37] Moody, P. J., A construction which yields a nonacyclic monotonically normal space, Topol. Appl., 44, 263-269 (1992) · Zbl 0801.54019
[38] Moody, P.; Reed, G.; Roscoe, A.; Collins, P., A lattice of conditions on topological spaces II, Fundam. Math., 138, 69-81 (1991) · Zbl 0745.54008
[39] Moody, P.; Roscoe, A., Acyclic monotone normality, Topol. Appl., 47, 53-67 (1992) · Zbl 0801.54018
[40] Nikiel, J., Images of arcs - a non-separable version of the Hahn-Mazurkiewicz theorem, Fundam. Math., 129, 91-120 (1988) · Zbl 0662.54019
[41] Nikiel, J., Some problems on continuous images of compact ordered spaces, Quest. Answ. Gen. Topol., 4, 117-128 (1986/87) · Zbl 0625.54039
[42] Nikiel, J.; Purisch, S.; Treybig, L., Separable zero-dimensional spaces which are continuous images of ordered compacta, Houst. J. Math., 24, 45-56 (1998) · Zbl 0965.54034
[43] Nyikos, P.; Purisch, S., Monotone normality and paracompactness in scattered spaces, (Papers on General Topology and Related Category Theory and Topological Algebra (1989), Annals of the New York Academy of Science: Annals of the New York Academy of Science New York), 124-137 · Zbl 0887.54019
[44] Onal, S.; Vural, C., Every monotonically normal Čch-complete space is subcompact, Topol. Appl., 176, 35-42 (2014) · Zbl 1305.54031
[45] Ostaszewski, A., Monotone normality and \(G_\delta \)-diagonals in the class of inductively-generated spaces, Colloq. Math. Soc. János Bolyai, 23, 905-930 (1980) · Zbl 0447.54026
[46] Palenz, D., Monotone normality and paracompactness, Topol. Appl., 14, 171-182 (1982) · Zbl 0491.54013
[47] Purisch, S., Posed problems, (Bennett, H.; Lutzer, D., Topology and Order Structures, Part 1. Topology and Order Structures, Part 1, Math. Cent. Tracts, vol. 142 (1981)), Amsterdam · Zbl 0464.54030
[48] Purisch, S.; Rudin, M. E., Products with linear and countable type factors, Proc. Am. Math. Soc., 125, 1823-1830 (1997) · Zbl 0917.54012
[49] Rudin, M. E., Compact, separable, linearly ordered spaces, Morita Memorial Volume, Topol. Appl., 82, 397-419 (1998) · Zbl 0889.54014
[50] Rudin, M. E., Zero-dimensionality and monotone normality, (Proceedings of the Eighth Prague Symposium of General Topology and Its Relations to Modern Analysis and Algebra. Proceedings of the Eighth Prague Symposium of General Topology and Its Relations to Modern Analysis and Algebra, Topol. Appl., vol. 85 (1998)), 319-333 · Zbl 0983.54007
[51] Rudin, M. E., Hereditarily paracompact and compact monotonically normal spaces, Topol. Appl., 111, 179-189 (2001) · Zbl 0983.54021
[52] Rudin, M. E., Nikiel’s conjecture, Topol. Appl., 116, 305-311 (2001) · Zbl 0988.54022
[53] Rudin, M. E., A cyclic monotonically normal space that is not \(K_0\), Proc. Am. Math. Soc., 119, 303-307 (1993) · Zbl 0789.54027
[54] Rudin, M. E., Monotone normality and compactness, (Proceedings of the International Conference on Set-Theoretic Topology and Its Applications. Proceedings of the International Conference on Set-Theoretic Topology and Its Applications, Topol. Appl., vol. 74 (1996)), 199-205 · Zbl 0874.54004
[55] Rudin, M. E., Monotone normality, (Encyclopedia of General Topology (2003), Elsevier: Elsevier Amsterdam), 286-287
[56] Rudin, M. E., Dowker spaces, (Handbook of Set-Theoretic Topology (1984), Elsevier: Elsevier Amsterdam), 761-780 · Zbl 0554.54005
[57] Rudin, M. E., A subset of the countable ordinals, Am. Math. Mon., 64, 351-352 (1957) · Zbl 0109.24401
[58] Rudin, M. E., Interval topology in subsets of totally orderable spaces, Trans. Am. Math. Soc., 112, 376-389 (1965) · Zbl 0134.40802
[59] Rudin, M. E., A topological characterization of sets of real numbers, Pac. J. Math., 7, 1185-1186 (1957) · Zbl 0079.16703
[60] Rudin, M. E., Souslin’s conjecture, Am. Math. Mon., 76, 1113-1119 (1969) · Zbl 0187.27302
[61] Rudin, M. E., Pixley-Roy and the Souslin line, Proc. Am. Math. Soc., 74, 128-134 (1979) · Zbl 0414.54003
[62] Rudin, M. E., Hereditary normality and Souslin lines, Gen. Topol. Appl., 10, 103-106 (1979) · Zbl 0405.54017
[63] Shkarin, S. A., Monotonically normal topological vector spaces are stratifiable, Topol. Appl., 136, 129-134 (2004) · Zbl 1038.46004
[64] Sorgenfrey, R., On the topological product of paracompact spaces, Bull. Am. Math. Soc., 53, 631-632 (1947) · Zbl 0031.28302
[65] Treybig, L. B.; Ward, L. E., The Hahn-Mazurkiewicz problem, (Bennett, H.; Lutzer, D., Topology and Order Structures, Part 1. Topology and Order Structures, Part 1, Math. Cent. Tracts, vol. 142 (1981)), 95-106, Amsterdam · Zbl 0466.54031
[66] Treybig, L., A characterization of spaces that are continuous images of an arc, Topol. Appl., 24, 229-239 (1986) · Zbl 0604.54030
[67] Vural, C., A direct proof of a theorem on monotonically normal spaces for GO-spaces, Rocky Mt. J. Math., 39, 2067-2071 (2009) · Zbl 1181.54037
[68] Williams, S.; Zhou, H., Strong versions of normality, (General Topology and Its Applications. General Topology and Its Applications, Lect. Notes Pure Appl. Math., vol. 134 (1991), Decker) · Zbl 0797.54011
[69] Williams, S.; Zhou, H., Order-like structure of monotonically normal spaces, Comment. Math. Univ. Carol., 39, 207-217 (1998) · Zbl 0937.54012
[70] Zenor, P., Monotonically normal spaces (Abstract 679-G2), Not. Am. Math. Soc., 17, 1034 (1970)
[71] Zhang, H.; Shi, W., Monotone normality and neighborhood assignments, Topol. Appl., 159, 603-607 (2012) · Zbl 1247.54034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.