×

Markov chain Monte Carlo: can we trust the third significant figure? (English) Zbl 1327.62017

Summary: Current reporting of results based on Markov chain Monte Carlo computations could be improved. In particular, a measure of the accuracy of the resulting estimates is rarely reported. Thus we have little ability to objectively assess the quality of the reported estimates. We address this issue in that we discuss why Monte Carlo standard errors are important, how they can be easily calculated in Markov chain Monte Carlo and how they can be used to decide when to stop the simulation. We compare their use to a popular alternative in the context of two examples.

MSC:

62-07 Data analysis (statistics) (MSC2010)
65C60 Computational problems in statistics (MSC2010)
65C05 Monte Carlo methods

Software:

R; spBayes; BayesDA; RngSteam
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Bratley, P., Fox, B. L. and Schrage, L. E. (1987). A Guide to Simulation . Springer, New York. · Zbl 0515.68070
[2] Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Statist. 7 434-455. JSTOR: · doi:10.2307/1390675
[3] Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation . Springer, New York. · Zbl 0949.65005 · doi:10.1007/978-1-4612-1276-8
[4] Christensen, O. F., Moller, J. and Waagepetersen, R. P. (2001). Geometric ergodicity of Metropolis-Hastings algorithms for conditional simulation in generalized linear mixed models. Methodol. Comput. Appl. Probab. 3 309-327. · Zbl 0993.65008 · doi:10.1023/A:1013779208892
[5] Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Amer. Statist. Assoc. 91 883-904. JSTOR: · Zbl 0869.62066 · doi:10.2307/2291683
[6] Cowles, M. K., Roberts, G. O. and Rosenthal, J. S. (1999). Possible biases induced by MCMC convergence diagnostics. J. Statist. Comput. Simul. 64 87-104. · Zbl 1156.62315 · doi:10.1080/00949659908811968
[7] Douc, R., Fort, G., Moulines, E. and Soulier, P. (2004). Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 1353-1377. · Zbl 1082.60062 · doi:10.1214/105051604000000323
[8] Finley, A. O., Banerjee, S. and Carlin, B. P. (2007). spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J. Statist. Software 19 .
[9] Fishman, G. S. (1996). Monte Carlo : Concepts , Algorithms , and Applications . Springer, New York. · Zbl 0859.65001
[10] Fort, G. and Moulines, E. (2000). V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Statist. Probab. Lett. 49 401-410. · Zbl 0981.60032 · doi:10.1016/S0167-7152(00)00074-2
[11] Fort, G. and Moulines, E. (2003). Polynomial ergodicity of Markov transition kernels. Stochastic Process. Appl. 103 57-99. · Zbl 1075.60547 · doi:10.1016/S0304-4149(02)00182-5
[12] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis , 2nd ed. Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1039.62018
[13] Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457-472. · Zbl 1386.65060
[14] Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7 473-511.
[15] Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Stochastic Geometry : Likelihood and Computation (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.) 79-140. Chapman and Hall/CRC, Boca Raton, FL. · Zbl 0809.62089
[16] Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920. · Zbl 0850.62834 · doi:10.2307/2291325
[17] Glynn, P. W. and Iglehart, D. L. (1990). Simulation output analysis using standardized time series. Math. Oper. Res. 15 1-16. JSTOR: · Zbl 0704.65110 · doi:10.1287/moor.15.1.1
[18] Glynn, P. W. and Whitt, W. (1991). Estimating the asymptotic variance with batch means. Oper. Res. Lett. 10 431-435. · Zbl 0744.62113 · doi:10.1016/0167-6377(91)90019-L
[19] Glynn, P. W. and Whitt, W. (1992). The asymptotic validity of sequential stopping rules for stochastic simulations. Ann. Appl. Probab. 2 180-198. · Zbl 0792.68200 · doi:10.1214/aoap/1177005777
[20] Haran, M., Bhat, K., Molineros, J. and De Wolf, E. (2007). Estimating the risk of a crop epidemic from coincident spatiotemporal processes. Technical report, Dept. Statistics, Pennsylvania State Univ. · Zbl 1306.62284 · doi:10.1007/s13253-009-0015-9
[21] Hoaglin, D. C. and Andrews, D. F. (1975). The reporting of computation-based results in statistics. Amer. Statist. 29 122-126. · Zbl 0322.62022 · doi:10.2307/2683438
[22] Hobert, J. P. and Geyer, C. J. (1998). Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. J. Multivariate Anal. 67 414-430. · Zbl 0922.60069 · doi:10.1006/jmva.1998.1778
[23] Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. J. Comput. Graph. Statist. 5 299-314.
[24] Jarner, S. F. and Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. · Zbl 0997.60070 · doi:10.1016/S0304-4149(99)00082-4
[25] Jarner, S. F. and Roberts, G. O. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224-247. · Zbl 1012.60062 · doi:10.1214/aoap/1015961162
[26] Johnson, A. A. and Jones, G. L. (2008). Gibbs sampling for a Bayesian hierarchical version of the general linear mixed model. Technical report, School of Statistics, Univ. Minnesota.
[27] Jones, G. L. (2004). On the Markov chain central limit theorem. Probab. Surv. 1 299-320. · Zbl 1189.60129 · doi:10.1214/154957804100000051
[28] Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537-1547. · Zbl 1171.62316 · doi:10.1198/016214506000000492
[29] Jones, G. L. and Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334. · Zbl 1127.60309 · doi:10.1214/ss/1015346317
[30] Jones, G. L. and Hobert, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 784-817. · Zbl 1048.62069 · doi:10.1214/009053604000000184
[31] L’Ecuyer, P., Simard, R., Chen, E. J. and Kelton, W. D. (2002). An objected-oriented random-number package with many long streams and substreams. Oper. Res. 50 1073-1075.
[32] Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing . Springer, New York. · Zbl 0991.65001
[33] Marchev, D. and Hobert, J. P. (2004). Geometric ergodicity of van Dyk and Meng’s algorithm for the multivariate Student’s t model. J. Amer. Statist. Assoc. 99 228-238. · Zbl 1089.60518 · doi:10.1198/016214504000000223
[34] Marinari, E. and Parisi, G. (1992). Simulated tempering: A new Monte Carlo scheme. Europhys. Lett. 19 451-458.
[35] Mengersen, K. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121. · Zbl 0854.60065 · doi:10.1214/aos/1033066201
[36] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001
[37] Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011. · Zbl 0812.60059 · doi:10.1214/aoap/1177004900
[38] Mira, A. and Tierney, L. (2002). Efficiency and convergence properties of slice samplers. Scand. J. Statist. 29 1-12. · Zbl 1018.91030 · doi:10.1111/1467-9469.00267
[39] Mykland, P., Tierney, L. and Yu, B. (1995). Regeneration in Markov chain samplers. J. Amer. Statist. Assoc. 90 233-241. JSTOR: · Zbl 0819.62082 · doi:10.2307/2291148
[40] Robert, C. P. (1995). Convergence control methods for Markov chain Monte Carlo algorithms. Statist. Sci. 10 231-253. · Zbl 0955.60526 · doi:10.1214/ss/1177009937
[41] Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods . Springer, New York. · Zbl 0935.62005
[42] Roberts, G. O. (1996). Markov chain concepts related to sampling algorithms. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. E. Spiegelhalter, eds.) 45-57. Chapman and Hall, London. · Zbl 0839.62078
[43] Roberts, G. O. and Polson, N. G. (1994). On the geometric convergence of the Gibbs sampler. J. Roy. Statist. Soc. Ser. B 56 377-384. JSTOR: · Zbl 0796.62029
[44] Roberts, G. O. and Rosenthal, J. S. (1999). Convergence of slice sampler Markov chains. J. Roy. Statist. Soc. Ser. B 61 643-660. JSTOR: · Zbl 0929.62098 · doi:10.1111/1467-9868.00198
[45] Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20-71. · Zbl 1189.60131 · doi:10.1214/154957804100000024
[46] Rosenthal, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566. JSTOR: · Zbl 0824.60077 · doi:10.2307/2291067
[47] Rosenthal, J. S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimators. Statist. Comput. 6 269-275.
[48] Roy, V. and Hobert, J. P. (2007). Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. J. Roy. Statist. Soc. Ser. B 69 607-623. · doi:10.1111/j.1467-9868.2007.00602.x
[49] Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.