×

zbMATH — the first resource for mathematics

Normalized estimating equation for robust parameter estimation. (English) Zbl 1327.62182
Summary: Robust parameter estimation has been discussed as a method for reducing a bias caused by outliers. An estimating equation using a weighted score function is often used. A typical estimating equation is non-normalized, but this paper considers a normalized estimating equation, which is corrected to ensure that the mean of the weight is one. In robust parameter estimation, it is important to control the difference between the target parameter and the limit of the robust estimator, which is referred to as the latent bias in this paper. The latent bias is usually discussed in terms of influence function and breakdown point. It is illustrated by some examples that the latent bias can be close to zero for the normalized estimating equation even if the proportion of outliers is not small, but not close to zero for the non-normalized estimating equation. Furthermore, this behavior of the normalized estimating equation can be proved under mild conditions. The asymptotic normality of the robust estimator is also presented and then it is shown that the outliers are naturally ignored with an appropriate proportion of outliers from the viewpoint of asymptotic variance. The results can be extended to the regression case. The behaviors of the latent bias and mean squared error are investigated by numerical studies.

MSC:
62F35 Robustness and adaptive procedures (parametric inference)
Software:
robustbase
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika 85 549-559. · Zbl 0926.62021
[2] Cantoni, E. and Ronchetti, E. (2001). Robust inference for generalized linear models. J. Amer. Statist. Assoc. 96 1022-1030. · Zbl 1072.62610
[3] Cichocki, A. and Amari, S. (2010). Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities. Entropy 12 1532-1568. · Zbl 1229.94030
[4] Copt, S. and Heritier, S. (2007). Robust alternatives to the \(F\)-test in mixed linear models based on \(MM\)-estimates. Biometrics 63 1045-1052. · Zbl 1274.62754
[5] Croux, C., Gijbels, I. and Prosdocimi, I. (2012). Robust estimation of mean and dispersion functions in extended generalized additive models. Biometrics 68 31-44. · Zbl 1241.62108
[6] Croux, C. and Haesbroeck, G. (2003). Implementing the Bianco and Yohai estimator for logistic regression. Comput. Statist. Data Anal. 44 273-295. · Zbl 1429.62317
[7] Eguchi, S. and Kano, Y. (2001). Robusting maximum likelihood estimation by psi-divergence. Research Memorandam of the Institute of Statistical Mathematics No.802.
[8] Eguchi, S. and Kato, S. (2010). Entropy and divergence associated with power function and the statistical application. Entropy 12 262-274. · Zbl 1229.82010
[9] Eguchi, S., Komori, O. and Kato, S. (2011). Projective Power Entropy and Maximum Tsallis Entropy Distributions. Entropy 13 1746-1764. · Zbl 1301.82002
[10] Ferrari, D. and La Vecchia, D. (2012). On robust estimation via pseudo-additive information. Biometrika 99 238-244. · Zbl 1234.62016
[11] Ferrari, D. and Yang, Y. (2010). Maximum Lq-likelihood estimation. Ann. Statist. 38 753-783. · Zbl 1183.62033
[12] Field, C. and Smith, B. (1994). Robust estimation: A weighted maximum likelihood approach. Internat. Statist. Rev. 62 405-424. · Zbl 0825.62428
[13] Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. J. Multivariate Anal. 99 2053-2081. · Zbl 1169.62010
[14] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics . John Wiley & Sons Inc., New York. · Zbl 0593.62027
[15] Heritier, S. and Ronchetti, E. (1994). Robust bounded-influence tests in general parametric models. J. Amer. Statist. Assoc. 89 897-904. · Zbl 0804.62037
[16] Huang, S.-Y., Yeh, Y.-R. and Eguchi, S. (2009). Robust kernel principal component analysis. Neural Comput. 21 3179-3213. · Zbl 1192.68522
[17] Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics , Second ed. John Wiley & Sons Inc., Hoboken, NJ. · Zbl 1276.62022
[18] Jones, M. C., Hjort, N. L., Harris, I. R. and Basu, A. (2001). A comparison of related density-based minimum divergence estimators. Biometrika 88 865-873. · Zbl 1180.62047
[19] Lee, A. J. (1990). \(U\)-Statistics . Marcel Dekker Inc., New York.
[20] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods . John Wiley & Sons Inc., New York. · Zbl 1094.62040
[21] Mattheou, K., Lee, S. and Karagrigoriou, A. (2009). A model selection criterion based on the BHHJ measure of divergence. J. Statist. Plann. Inference 139 228-235. · Zbl 1149.62002
[22] McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models . Chapman & Hall, London. · Zbl 0588.62104
[23] Minami, M. and Eguchi, S. (2002). Robust blind source separation by beta-divergence. Neural Comput. 14 1859-1886. · Zbl 1019.94506
[24] Miyamura, M. and Kano, Y. (2006). Robust Gaussian graphical modeling. J. Multivariate Anal. 97 1525-1550. · Zbl 1093.62038
[25] Mollah, M. N. H., Minami, M. and Eguchi, S. (2006). Exploring latent structure of mixture ICA models by the minimum \(\beta\)-divergence method. Neural Comput. 18 166-190. · Zbl 1086.94008
[26] Murata, N., Takenouchi, T., Kanamori, T. and Eguchi, S. (2004). Information geometry of U-Boost and Bregman divergence. Neural Comput. 16 1437-1481. · Zbl 1102.68489
[27] Scott, D. W. (2001). Parametric statistical modeling by minimum integrated square error. Technometrics 43 274-285.
[28] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics . John Wiley & Sons Inc., New York. · Zbl 0538.62002
[29] Takenouchi, T. and Eguchi, S. (2004). Robustifying AdaBoost by adding the naive error rate. Neural Comput. 16 767-787. · Zbl 1097.68608
[30] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Physics 52 479-487. · Zbl 1082.82501
[31] Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World . Springer, New York. · Zbl 1172.82004
[32] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge University Press, Cambridge. · Zbl 0910.62001
[33] Villmann, T. and Haase, S. (2011). Divergence-based vector quantization. Neural Comput. 23 1-50. · Zbl 1216.68225
[34] Windham, M. P. (1995). Robustifying model fitting. J. Roy. Statist. Soc. Ser. B 57 599-609. · Zbl 0827.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.