Castillo, Ismaël; Rousseau, Judith A Bernstein-von Mises theorem for smooth functionals in semiparametric models. (English) Zbl 1327.62302 Ann. Stat. 43, No. 6, 2353-2383 (2015). Summary: A Bernstein-von Mises theorem is derived for general semiparametric functionals. The result is applied to a variety of semiparametric problems in i.i.d. and non-i.i.d. situations. In particular, new tools are developed to handle semiparametric bias, in particular for nonlinear functionals and in cases where regularity is possibly low. Examples include the squared \(L^{2}\)-norm in Gaussian white noise, nonlinear functionals in density estimation, as well as functionals in autoregressive models. For density estimation, a systematic study of BvM results for two important classes of priors is provided, namely random histograms and Gaussian process priors. Cited in 42 Documents MSC: 62G20 Asymptotic properties of nonparametric inference 62M15 Inference from stochastic processes and spectral analysis Keywords:Bayesian nonparametrics; Bernstein-von Mises theorem; posterior concentration; semiparametric inference × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Arbel, J., Gayraud, G. and Rousseau, J. (2013). Bayesian optimal adaptive estimation using a sieve prior. Scand. J. Stat. 40 549-570. · Zbl 1364.62102 · doi:10.1002/sjos.12002 [2] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis , 2nd ed. Springer, New York. · Zbl 0572.62008 [3] Bickel, P. J. and Kleijn, B. J. K. (2012). The semiparametric Bernstein-von Mises theorem. Ann. Statist. 40 206-237. · Zbl 1246.62081 · doi:10.1214/11-AOS921 [4] Bickel, P. J. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhyā Ser. A 50 381-393. · Zbl 0676.62037 [5] Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in”. Ann. Statist. 31 1033-1053. · Zbl 1058.62031 · doi:10.1214/aos/1059655904 [6] Bontemps, D. (2011). Bernstein-von Mises theorems for Gaussian regression with increasing number of regressors. Ann. Statist. 39 2557-2584. · Zbl 1231.62061 · doi:10.1214/11-AOS912 [7] Boucheron, S. and Gassiat, E. (2009). A Bernstein-von Mises theorem for discrete probability distributions. Electron. J. Stat. 3 114-148. · Zbl 1326.62036 · doi:10.1214/08-EJS262 [8] Cai, T. T. and Low, M. G. (2006). Optimal adaptive estimation of a quadratic functional. Ann. Statist. 34 2298-2325. · Zbl 1110.62048 · doi:10.1214/009053606000000849 [9] Castillo, I. (2008). Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2 1281-1299. · Zbl 1320.62067 · doi:10.1214/08-EJS273 [10] Castillo, I. (2012). A semiparametric Bernstein-von Mises theorem for Gaussian process priors. Probab. Theory Related Fields 152 53-99. · Zbl 1232.62054 · doi:10.1007/s00440-010-0316-5 [11] Castillo, I. (2012). Semiparametric Bernstein-von Mises theorem and bias, illustrated with Gaussian process priors. Sankhyā 74 194-221. · Zbl 1281.62087 · doi:10.1007/s13171-012-0008-6 [12] Castillo, I. (2014). On Bayesian supremum norm contraction rates. Ann. Statist. 42 2058-2091. · Zbl 1305.62189 · doi:10.1214/14-AOS1253 [13] Castillo, I. and Nickl, R. (2013). Nonparametric Bernstein-von Mises theorems in Gaussian white noise. Ann. Statist. 41 1999-2028. · Zbl 1285.62052 · doi:10.1214/13-AOS1133 [14] Castillo, I. and Nickl, R. (2014). On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42 1941-1969. · Zbl 1305.62190 · doi:10.1214/14-AOS1246 [15] Castillo, I. and Rousseau, J. (2015). Supplement to “A Bernstein-von Mises theorem for smooth functionals in semiparametric models.” . · Zbl 1327.62302 · doi:10.1214/15-AOS1336 [16] Cox, D. D. (1993). An analysis of Bayesian inference for nonparametric regression. Ann. Statist. 21 903-923. · Zbl 0778.62003 · doi:10.1214/aos/1176349157 [17] De Blasi, P. and Hjort, N. L. (2009). The Bernstein-von Mises theorem in semiparametric competing risks models. J. Statist. Plann. Inference 139 2316-2328. · Zbl 1160.62023 · doi:10.1016/j.jspi.2008.10.018 [18] Efromovich, S. and Low, M. (1996). On optimal adaptive estimation of a quadratic functional. Ann. Statist. 24 1106-1125. · Zbl 0865.62024 · doi:10.1214/aos/1032526959 [19] Freedman, D. (1999). On the Bernstein-von Mises theorem with infinite-dimensional parameters. Ann. Statist. 27 1119-1140. · Zbl 0957.62002 [20] Gayraud, G. and Tribouley, K. (1999). Wavelet methods to estimate an integrated quadratic functional: Adaptivity and asymptotic law. Statist. Probab. Lett. 44 109-122. · Zbl 0947.62029 · doi:10.1016/S0167-7152(98)00296-X [21] Ghosal, S. (1999). Asymptotic normality of posterior distributions in high-dimensional linear models. Bernoulli 5 315-331. · Zbl 0948.62007 · doi:10.2307/3318438 [22] Ghosal, S. and van der Vaart, A. W. (2007). Convergence rates of posterior distributions for noniid observations. Ann. Statist. 35 192-223. · Zbl 1114.62060 · doi:10.1214/009053606000001172 [23] Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics . Springer, New York. · Zbl 1029.62004 [24] Kim, Y. (2006). The Bernstein-von Mises theorem for the proportional hazard model. Ann. Statist. 34 1678-1700. · Zbl 1246.62050 · doi:10.1214/009053606000000533 [25] Knapik, B. T., Szabó, B. T., van der Vaart, A. W. and van Zanten, J. H. (2012). Bayes procedures for adaptive inference in inverse problems for the white noise model. Available at . arXiv:1209.3628 · Zbl 1334.62039 · doi:10.1007/s00440-015-0619-7 [26] Knapik, B. T., van der Vaart, A. W. and van Zanten, J. H. (2011). Bayesian inverse problems with Gaussian priors. Ann. Statist. 39 2626-2657. · Zbl 1232.62079 · doi:10.1214/11-AOS920 [27] Kruijer, W. and Rousseau, J. (2013). Bayesian semi-parametric estimation of the long-memory parameter under FEXP-priors. Electron. J. Stat. 7 2947-2969. · Zbl 1349.62100 · doi:10.1214/13-EJS864 [28] Laurent, B. (1996). Efficient estimation of integral functionals of a density. Ann. Statist. 24 659-681. · Zbl 0859.62038 · doi:10.1214/aos/1032894458 [29] Leahu, H. (2011). On the Bernstein-von Mises phenomenon in the Gaussian white noise model. Electron. J. Stat. 5 373-404. · Zbl 1274.62290 · doi:10.1214/11-EJS611 [30] Rivoirard, V. and Rousseau, J. (2012). Bernstein-von Mises theorem for linear functionals of the density. Ann. Statist. 40 1489-1523. · Zbl 1257.62036 · doi:10.1214/12-AOS1004 [31] Shen, X. (2002). Asymptotic normality of semiparametric and nonparametric posterior distributions. J. Amer. Statist. Assoc. 97 222-235. · Zbl 1073.62517 · doi:10.1198/016214502753479365 [32] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256 [33] van der Vaart, A. W. and van Zanten, J. H. (2008). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 1435-1463. · Zbl 1141.60018 · doi:10.1214/009053607000000613 [34] van der Vaart, A. W. and van Zanten, J. H. (2008). Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the Limits of Contemporary Statistics : Contributions in Honor of Jayanta K. Ghosh. Inst. Math. Stat. Collect. 3 200-222. IMS, Beachwood, OH. · doi:10.1214/074921708000000156 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.