Hoffmann, Marc; Rousseau, Judith; Schmidt-Hieber, Johannes On adaptive posterior concentration rates. (English) Zbl 1327.62306 Ann. Stat. 43, No. 5, 2259-2295 (2015). Summary: We investigate the problem of deriving posterior concentration rates under different loss functions in nonparametric Bayes. We first provide a lower bound on posterior coverages of shrinking neighbourhoods that relates the metric or loss under which the shrinking neighbourhood is considered, and an intrinsic pre-metric linked to frequentist separation rates. In the Gaussian white noise model, we construct feasible priors based on a spike and slab procedure reminiscent of wavelet thresholding that achieve adaptive rates of contraction under \(L^{2}\) or \(L^{\infty}\) metrics when the underlying parameter belongs to a collection of Hölder balls and that moreover achieve our lower bound. We analyse the consequences in terms of asymptotic behaviour of posterior credible balls as well as frequentist minimax adaptive estimation. Our results are appended with an upper bound for the contraction rate under an arbitrary loss in a generic regular experiment. The upper bound is attained for certain sieve priors and enables to extend our results to density estimation. Cited in 35 Documents MSC: 62G20 Asymptotic properties of nonparametric inference 62G08 Nonparametric regression and quantile regression 62G07 Density estimation Keywords:Bayesian nonparametrics; minimax adaptive estimation; posterior concentration rates; sup-norm; rates of convergence × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Arbel, J., Gayraud, G. and Rousseau, J. (2013). Bayesian optimal adaptive estimation using a sieve prior. Scand. J. Stat. 40 549-570. · Zbl 1364.62102 · doi:10.1002/sjos.12002 [2] Barron, A. (1988). The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions. Technical report, Univ. Illinois at Urbana-Campaign. [3] Belitser, E. and Ghosal, S. (2003). Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution. Ann. Statist. 31 536-559. · Zbl 1039.62039 · doi:10.1214/aos/1051027880 [4] Brown, L. D. and Low, M. G. (1996). A constrained risk inequality with applications to nonparametric functional estimation. Ann. Statist. 24 2524-2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166 [5] Cai, T. T. (2008). On information pooling, adaptability and superefficiency in nonparametric function estimation. J. Multivariate Anal. 99 421-436. · Zbl 1148.62020 · doi:10.1016/j.jmva.2006.11.010 [6] Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist. 32 1805-1840. · Zbl 1056.62060 · doi:10.1214/009053604000000049 [7] Cai, T. T. and Low, M. G. (2005). Adaptive estimation of linear functionals under different performance measures. Bernoulli 11 341-358. · Zbl 1063.62045 · doi:10.3150/bj/1116340298 [8] Cai, T. T. and Low, M. G. (2006). Adaptation under probabilistic error for estimating linear functionals. J. Multivariate Anal. 97 231-245. · Zbl 1078.62105 · doi:10.1016/j.jmva.2005.03.001 [9] Cai, T. T., Low, M. G. and Zhao, L. H. (2007). Trade-offs between global and local risks in nonparametric function estimation. Bernoulli 13 1-19. · Zbl 1111.62029 · doi:10.3150/07-BEJ5001 [10] Castillo, I., Kerkyacharian, G. and Picard, D. (2014). Thomas Bayes’ walk on manifolds. Probab. Theory Related Fields 158 665-710. · Zbl 1285.62028 · doi:10.1007/s00440-013-0493-0 [11] Choudhuri, N., Ghosal, S. and Roy, A. (2004). Bayesian estimation of the spectral density of a time series. J. Amer. Statist. Assoc. 99 1050-1059. · Zbl 1055.62100 · doi:10.1198/016214504000000557 [12] Cohen, A. (2003). Numerical Analysis of Wavelet Methods . North-Holland, Amsterdam. · Zbl 1038.65151 [13] Cohen, A., Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 54-81. · Zbl 0795.42018 · doi:10.1006/acha.1993.1005 [14] Donoho, D. and Liu, R. G. (1991). Geometrizing rates of convergence III. Ann. Statist. 19 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115 [15] Ghosal, S., Ghosh, J. K. and van der Vaart, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315 · doi:10.1214/aos/1016218228 [16] Ghosal, S. and van der Vaart, A. (2006). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 192-223. · Zbl 1114.62060 · doi:10.1214/009053606000001172 [17] Giné, E. and Nickl, R. (2011). Rates on contraction for posterior distributions in \(L^{r}\)-metrics, \(1\leq r\leq\infty\). Ann. Statist. 39 2883-2911. · Zbl 1246.62095 · doi:10.1214/11-AOS924 [18] Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. Ann. Statist. 39 2383-2409. · Zbl 1232.62072 · doi:10.1214/11-AOS903 [19] Kruijer, W., Rousseau, J. and van der Vaart, A. (2010). Adaptive Bayesian density estimation with location-scale mixtures. Electron. J. Stat. 4 1225-1257. · Zbl 1329.62188 · doi:10.1214/10-EJS584 [20] Lepskiĭ, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466. · Zbl 0745.62083 [21] Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics : Some Basic Concepts , 2nd ed. Springer, New York. · Zbl 0952.62002 [22] Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. · Zbl 0894.62055 · doi:10.1214/aos/1030741084 [23] Robert, C. (2004). The Bayesian Choice . Springer, New York. [24] Rousseau, J. (2010). Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparametric estimation of the density. Ann. Statist. 38 146-180. · Zbl 1181.62047 · doi:10.1214/09-AOS703 [25] Rousseau, J., Chopin, N. and Liseo, B. (2012). Bayesian nonparametric estimation of the spectral density of a long or intermediate memory Gaussian process. Ann. Statist. 40 964-995. · Zbl 1274.62340 · doi:10.1214/11-AOS955 [26] Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26. · Zbl 0158.17606 · doi:10.1007/BF00535479 [27] Scricciolo, C. (2014). Adaptive Bayesian density estimation in \(L^{p}\)-metrics with Pitman-Yor or normalized inverse-Gaussian process kernel mixtures. Bayesian Anal. 9 475-520. · Zbl 1327.62161 · doi:10.1214/14-BA863 [28] Shen, W., Tokdar, S. and Ghosal, S. (2012). Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Technical report. · Zbl 1284.62183 · doi:10.1093/biomet/ast015 [29] Tang, Y. and Ghosal, S. (2007). Posterior consistency of Dirichlet mixtures for estimating a transition density. J. Statist. Plann. Inference 137 1711-1726. · Zbl 1118.62089 · doi:10.1016/j.jspi.2006.03.007 [30] van der Vaart, A. W. and van Zanten, J. H. (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse gamma bandwidth. Ann. Statist. 37 2655-2675. · Zbl 1173.62021 · doi:10.1214/08-AOS678 [31] Zhao, L. H. (2000). Bayesian aspects of some nonparametric problems. Ann. Statist. 28 532-552. · Zbl 1010.62025 · doi:10.1214/aos/1016218229 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.