×

Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. (English) Zbl 1327.93033

Summary: In this paper, a distributed constrained optimization problem is discussed to achieve the optimal point of the sum of agents’ local objective functions while satisfying local constraints. Here neither the local objective function nor local constraint functions of each agent can be shared with other agents. To solve the problem, a novel distributed continuous-time algorithm is proposed by using the KKT condition combined with the Lagrangian multiplier method, and the convergence is proved with the help of Lyapunov functions and an invariance principle for hybrid systems. Furthermore, this distributed algorithm is applied to optimal load sharing control problem in power systems. Both theoretical and numerical results show that the optimal load sharing can be achieved within both generation and delivering constraints in a distributed way.

MSC:

93A14 Decentralized systems
93C95 Application models in control theory
49N90 Applications of optimal control and differential games
49M30 Other numerical methods in calculus of variations (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Nedic, A.; Ozdaglar, A., Distributed subgradient methods for multi-agent optimization, IEEE Trans. Automatic Control, 54, 1, 48-61, (2009) · Zbl 1367.90086
[2] Nedic, A.; Ozdaglar, A.; Parrilo, A. P., Constrained consensus and optimization in multi-agent networks, IEEE Trans. Automat. Control, 55, 4, 922-938, (2010) · Zbl 1368.90143
[3] Necoara, I.; Nesterov, Y.; Glineur, F., A random coordinate descent method on large optimization problems with linear constraints, technical report, 1-25, (2011), University Politehnica Bucharest
[4] Zhu, M.; Martinez, S., On distributed convex optimization under inequality and equality constraints, IEEE Trans. Automat. Control, 57, 1, 151-164, (2012) · Zbl 1369.90129
[5] Bianchi, P.; Jakubowicz, J., Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization, IEEE Trans. Automat. Control, 58, 2, 391-405, (2013) · Zbl 1369.90131
[6] Necoara, I., Random coordinate descent algorithms for multi-agent convex optimization over networks, IEEE Trans. Automat. Control, 58, 8, 2001-2012, (2013) · Zbl 1369.90124
[7] Lou, Y.; Shi, G.; Johansson, K. H.; Hong, Y., Approximate projected consensus for convex intersection computation: convergence analysis and critical error angle, IEEE Trans. Automat. Control, 59, 7, 1722-1736, (2014) · Zbl 1360.90204
[8] Towfic, Z. J.; Sayed, A. H., Adaptive penalty-based distributed stochastic convex optimization, IEEE Trans. Signal Process., 62, 15, 3924-3938, (2014) · Zbl 1393.90078
[9] Yi, P.; Hong, Y., Quantized subgradient algorithm and data-rate analysis for distributed optimization, IEEE Trans. Control Netw. Syst., 1, 4, 380-392, (2014) · Zbl 1370.90071
[10] Sayed, A. H., Adaptation, learning, and optimization over networks, (Foundations and Trends in Machine Learning, Vol. 7, (2014), NOW Publishers Boston-Delft), 4-5
[11] J. Wang, N. Elia, Control approach to distributed optimization, in: Allerton Conf. on Communications, Control and Computing, Illinois, USA, 2010, pp. 557-561.
[12] Shi, G.; Johansson, K. H.; Hong, Y., Reaching an optimal consensus: dynamical systems that compute intersections of convex sets, IEEE Trans. Automat. Control, 58, 3, 610-622, (2013) · Zbl 1369.93049
[13] Wang, X.; Yi, P.; Hong, Y., Dynamic optimization for multi-agent systems with external disturbances, Control Theory Technol., 12, 2, 132-138, (2014)
[14] Yi, P.; Zhang, Y.; Hong, Y., Potential game design for a class of distributed optimization problems, J. Control Decis., 1, 2, 166-179, (2014)
[15] Droge, G.; Kawashima, H.; Egerstedt, M. B., Continuous-time proportional-integral distributed optimisation for networked systems, J. Control Decis., 1, 3, 191-213, (2014)
[16] Gharesifard, B.; Cortés, J., Distributed continuous-time convex optimization on weight-balanced digraphs, IEEE Trans. Automat. Control, 59, 3, 781-786, (2014) · Zbl 1360.90257
[17] Kia, S.; Cortés, J.; Martinez, S., Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication, Automatica, 55, 5, 254-264, (2015) · Zbl 1377.93018
[18] Arrow, K.; Huwicz, L.; Uzawa, H., Studies in linear and non-linear programming, (1958), Stanford University Press
[19] Liao, L.; Qi, H.; Qi, L., Neurodynamical optimization, J. Global Optim., 28, 1, 175-195, (2004) · Zbl 1058.90062
[20] Bhaya, A.; Kaszkurewicz, E., Control perspectives on numerical algrorithm and matix problems, (2006), SIAM
[21] Zhao, C.; Topcu, U.; Li, N.; Low, S. H., Design and stability of load-side primary frequency control in power systems, IEEE Trans. Automat. Control, 59, 5, 1177-1189, (2014) · Zbl 1360.90057
[22] Kar, S.; Hug, G., Distributed robust economic dispatch in power systems: a consensus+ innovations approach, IEEE Power Energy Soc. Gen. Meet., 1-8, (2012)
[23] Zhang, Z.; Chow, M. Y., Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid, IEEE Trans. Power Syst., 27, 4, 1761-1768, (2012)
[24] Zhang, W.; Liu, W.; Wang, X.; Liu, L.; Ferrese, F., Online optimal generation control based on constrained distributed gradient algorithm, IEEE Trans. Power Syst., 30, 1, 35-45, (2015)
[25] Feijer, D.; Paganini, F., Stability of primal-dual gradient dynamics and applications to network optimization, Automatica, 46, 12, 1974-1981, (2010) · Zbl 1205.93138
[26] Ruszczynski, A. P., Nonlinear optimization, (2006), Princeton university press Princeton, NJ
[27] Mesbahi, M.; Egerstedt, M., Graph theoretic methods for multiagent networks, (2010), Princeton University Press Princeton, NJ · Zbl 1203.93001
[28] Lygeros, J.; Johansson, K. H.; Simic, S. N.; Zhang, J.; Sastry, S. S., Dynamical properties of hybrid automata, IEEE Trans. Automat. Control, 48, 1, 2-17, (2003) · Zbl 1364.93503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.