×

zbMATH — the first resource for mathematics

Combinatorics of \(K\)-theory via a \(K\)-theoretic Poirier-Reutenauer bialgebra. (English) Zbl 1328.05193
Summary: We use the \(K\)-Knuth equivalence of A. Buch and M. Samuel [“\(K\)-theory of minuscule varieties”, J. Reine Angew. Math. (to appear)] to define a \(K\)-theoretic analogue of the Poirier-Reutenauer Hopf algebra. As an application, we rederive the \(K\)-theoretic Littlewood-Richardson rules of H. Thomas and A. Yong [Algebra Number Theory 3, No. 2, 121–148 (2009; Zbl 1229.05285); Int. Math. Res. Not. 2011, No. 12, 2766–2793 (2011; Zbl 1231.05280)] and of Buch and Samuel [loc. cit.].

MSC:
05E05 Symmetric functions and generalizations
05A17 Combinatorial aspects of partitions of integers
14N15 Classical problems, Schubert calculus
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Buch, A., A Littlewood Richardson rule for the K-theory of Grassmannians, Acta Math., 189, 37-78, (2002) · Zbl 1090.14015
[2] Buch, A.; Kresch, A.; Shimozono, M.; Tamvakis, H.; Yong, A., Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann., 340, 2, 359-382, (2008) · Zbl 1157.14036
[3] A. Buch, M. Samuel, \(K\)-theory of minuscule varieties, J. Reine Angew. Math. (2014) in press. · Zbl 1431.19001
[4] Duchamp, G.; Hivert, F.; Novelli, J.-C.; Thibon, J.-Y., Noncommutative symmetric functions VII: free quasi-symmetric functions revisited, Ann. Comb., 15, 655-673, (2011) · Zbl 1233.05200
[5] Fomin, S.; Greene, C., Noncommutative Schur functions and their applications, Discrete Math., 193, 179-200, (1998) · Zbl 1011.05062
[6] S. Fomin, A. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, in: Proc. 6th Intern. Conf. on Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190.
[7] Greene, C., Some partitions associated with a partially ordered set, J. Combin. Theory Ser. A, 20, 1, 69-79, (1976) · Zbl 0323.06002
[8] Lam, T.; Pylyavskyy, P., Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not. IMRN, 2007, (2007), rnm 125 · Zbl 1134.16017
[9] Lascoux, A.; Schutzenberger, M.-P., Symmetry and flag manifolds, Lect. Notes Math., 996, 118-144, (1983)
[10] B. Leclerc, J.Y. Thibon, The Plactic Monoid, in M. Lothaire, Algebraic Combinatorics on Words, Cambridge, 2002, pp. 164-195.
[11] Manivel, L., Symmetric functions, Schubert polynomials, and degeneracy loci, (2001), American Mathematical Society · Zbl 0998.14023
[12] Miller, E.; Sturmfels, B., Combinatorial commutative algebra, (2005), Springer-Verlag New York · Zbl 1090.13001
[13] Poirier, S.; Reutenauer, C., Hopf algebras of tableaux, Ann. Sci. Math. Quebec, 19, 79-90, (1995) · Zbl 0835.16035
[14] S. Shnider, Sh. Sternberg, Quantum Groups: From Coalgebras to Drinfeld algebras: A Guided Tour, Cambridge, 1993. · Zbl 0845.17015
[15] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge, 1999.
[16] Taskin, M., Properties of four partial orders on standard Young tableaux, J. Combin. Theory Ser. A, 113, 6, 1092-1119, (2006) · Zbl 1094.05056
[17] Thomas, H.; Yong, A., A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory, 3, 121-148, (2009) · Zbl 1229.05285
[18] Thomas, H.; Yong, A., The direct sum map on Grassmannians and jeu de taquin for increasing tableaux, Int. Math. Res. Not. IMRN, 12, 2766-2793, (2011) · Zbl 1231.05280
[19] Thomas, H.; Yong, A., Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. Appl. Math., 46, 1-4, 610-642, (2011) · Zbl 1227.05262
[20] A. Zelevinsky, Representations of Finite Classical Groups: A Hopf Algebra Approach, Lecture Notes in Mathematics, vol. 869, Berlin-New York, 1981. · Zbl 0465.20009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.