×

On certain extremal pencils of curves with respect to the total reducibility order. (English) Zbl 1328.14012

Summary: We consider another application of the Ogg-Shafarevich-Grothendieck formula (abbr. OSG) to pencils of plane curves of degree \(d\) with certain extremal properties of reducibility. Besides some new results for extremal pencils we treat also various aspects of the topics, e.g. pencils with small number of special fibres, families with \((2IV_{d})\), etc.

MSC:

14C21 Pencils, nets, webs in algebraic geometry
14H10 Families, moduli of curves (algebraic)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. S. Abhyankar and A. Sathaye, Uniqueness of plane embeddings of special curves, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1061-1069. · Zbl 0880.14012
[2] A. Beauville, Les familles stables de courbes elliptiques sur \(\mathbf{P}^{1}\) admettant quatre fibres singulières, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 19, 657-660. · Zbl 0504.14016
[3] Y. F. Bilu, Quadratic factors of \(f(x)-g(y)\), Acta Arith. 90 (1999), no. 4, 341-355. · Zbl 0935.12003
[4] P. Cassou-Noguès and J.-M. Couveignes, Factorisations explicites de \(g(y)-h(z)\), Acta Arith. 87 (1999), no. 4, 291-317. · Zbl 0923.12004
[5] M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55. · Zbl 0169.37702
[6] M. Fried, Variables separated equations: Strikingly different roles for the branch cycle lemma and the finite simple group classification, arXiv: · Zbl 1330.12001
[7] S. Kaliman, Two remarks on polynomials in two variables, Pacific J. Math. 154 (1992), no. 2, 285-295. · Zbl 0723.32001
[8] M. Kulkarni, P. Müller and B. Sury, Quadratic factors of \(f(X)-g(Y)\), Indag. Math. (N.S.) 18 (2007), no. 2, 233-243. · Zbl 1131.11067
[9] A. Libgober and S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337-361. · Zbl 0952.52020
[10] D. Lorenzini, Reducibility of polynomials in two variables, J. Algebra 156 (1993), no. 1, 65-75. · Zbl 0791.12001
[11] V. Kh. Nguyen, On Beauville’s conjecture and related topics, J. Math. Kyoto Univ. 35 (1995), no. 2, 275-298. · Zbl 0860.14008
[12] V. Kh. Nguyen, On families of curves over \(\mathbf{P}^{1}\) with small number of singular fibres, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 459-463. · Zbl 0929.14002
[13] V. Kh. Nguyen, On families of curves over \(\mathbf{P}^{1}\) with two singular fibres, Abstracts of the Symposium, Algebraic Geometry in East Asia. II, Hanoi, 2005 .
[14] W. Ruppert, Reduzibilität ebener Kurven, J. Reine Angew. Math. 369 (1986), 167-191. · Zbl 0584.14012
[15] Y. Stein, The total reducibility order of a polynomial in two variables, Israel J. Math. 68 (1989), no. 1, 109-122. · Zbl 0716.12001
[16] A. Vistoli, The number of reducible hypersurfaces in a pencil, Invent. Math. 112 (1993), no. 2, 247-262. · Zbl 0799.14024
[17] S. Yuzvinsky, Realization of finite abelian groups by nets in \(\mathbf{P}^{2}\), Compositio Math. 140 (2004), no. 6, 1614-1624. · Zbl 1066.52027
[18] S. Yuzvinsky, A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1641-1648. · Zbl 1173.14021
[19] M. Zaidenberg and V. Lin, An irreducible simply connected curve in \(\mathbf{C}^{2}\) is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-204. · Zbl 0564.14014
[20] M. Zaidenberg, Rational actions of the group \(\mathbf{C}^{*}\) on \(\mathbf{C}^{2}\), their quasi-invariants, and algebraic curves in \(\mathbf{C}^{2}\) with Euler characteristic 1, Soviet Math. Dokl. 31 (1985), 57-60. · Zbl 0595.14035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.