Xiao, Zhankui Jordan derivations of incidence algebras. (English) Zbl 1328.16022 Rocky Mt. J. Math. 45, No. 4, 1357-1368 (2015). Summary: Let \(\mathcal R\) be a commutative ring with identity and \(I(X,\mathcal R)\) the incidence algebra of a locally finite pre-ordered set \(X\). In this note, we characterize the derivations of \(I(X,\mathcal R)\) and prove that every Jordan derivation of \(I(X,\mathcal R)\) is a derivation, provided that \(\mathcal R\) is \(2\)-torsion free. Cited in 1 ReviewCited in 17 Documents MSC: 16W25 Derivations, actions of Lie algebras 16W10 Rings with involution; Lie, Jordan and other nonassociative structures 06A06 Partial orders, general Keywords:Jordan derivations; incidence algebras; locally finite pre-ordered sets PDF BibTeX XML Cite \textit{Z. Xiao}, Rocky Mt. J. Math. 45, No. 4, 1357--1368 (2015; Zbl 1328.16022) Full Text: DOI arXiv Euclid References: [1] K. Baclawski, Automorphisms and derivations of incidence algebras , Proc. Amer. Math. Soc. 36 (1972), 351-356. · Zbl 0233.06001 [2] M. Brešar, Jordan derivations on semiprime rings , Proc. Amer. Math. Soc. 104 (1988), 1003-1006. · Zbl 0691.16039 [3] —-, Jordan mappings of semiprime rings , J. Alg. 127 (1989), 218-228. · Zbl 0691.16040 [4] —-, Jordan derivations revisited , Math. Proc. Camb. Phil. Soc. 139 (2005), 411-425. · Zbl 1092.16020 [5] S.P. Coelho and C.P. Milies, Derivations of upper triangular matrix rings , Linear Alg. Appl. 187 (1993), 263-267. · Zbl 0781.16020 [6] J.M. Cusack, Jordan derivations on rings , Proc. Amer. Math. Soc. 53 (1975), 321-324. · Zbl 0327.16020 [7] I.N. Herstein, Jordan derivations of prime rings , Proc. Amer. Math. Soc. 8 (1957), 1104-1110. · Zbl 0216.07202 [8] N. Jacobson and C. Rickart, Jordan homomorphisms of rings , Trans. Amer. Math. Soc. 69 (1950), 479-502. · Zbl 0039.26402 [9] S. Jøndrup, Automorphisms and derivations of upper triangular matrix rings , Linear Alg. Appl. 221 (1995), 205-218. · Zbl 0826.16034 [10] M. Koppinen, Automorphisms and higher derivations of incidence algebras , J. Alg. 174 (1995), 698-723. · Zbl 0835.16029 [11] F. Lu, The Jordan structure of CSL algebras , Stud. Math. 190 (2009), 283-299. · Zbl 1156.47058 [12] D. Mathis, Differential polynomial rings and Morita equivalence , Comm. Alg. 10 (1982), 2001-2017. · Zbl 0505.16018 [13] A. Nowicki, Derivations of special subrings of matrix rings and regular graphs , Tsukuba J. Math. 7 (1983), 281-297. · Zbl 0536.16024 [14] A. Nowicki and I. Nowosad, Local derivations of subrings of matrix rings , Acta Math. Hung. 105 (2004), 145-150. · Zbl 1070.16035 [15] E. Spiegel, On the automorphisms of incidence algebras , J. Alg. 239 (2001), 615-623. · Zbl 0996.16024 [16] E. Spiegel and C. O’Donnell, Incidence algebras , Mono. Text. Pure Appl. Math. 206 , Marcel Dekker, New York, 1997. [17] R. Stanley, Structure of incidence algebras and their automorphism groups , Bull. Amer. Math. Soc. 76 (1970), 1236-1239. · Zbl 0205.31702 [18] M. Ward, Arithmetic functions on rings , Ann. Math. 38 (1937), 725-732. · Zbl 0017.19404 [19] Z.-K. Xiao and F. Wei, Lie triple derivations of triangular algebras , Linear Alg. Appl. 437 (2012), 1234-1249. · Zbl 1253.16042 [20] J.-H. Zhang and W.-Y. Yu, Jordan derivations of triangular algebras , Lin. Alg. Appl. 419 (2006), 251-255. · Zbl 1103.47026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.