×

New application of the \((G'/G)\)-expansion method for thin film equations. (English) Zbl 1328.35013

Summary: The \((G'/G)\)-expansion method is used for the first time to find traveling wave solutions for thin film equations, where it is found that the related balance numbers are not the usual positive integers. The closed-form solution obtained via this method is in good agreement with the previously obtained solutions of other researchers. It is also noted that, for appropriate parameters, new solitary waves solutions are found.

MSC:

35C07 Traveling wave solutions
35Q35 PDEs in connection with fluid mechanics
76A20 Thin fluid films

References:

[1] O’Brien, S. B. G.; Schwartz, L. W., Theory and modeling of thin film flows, Encyclopedia of Surface Colloid Science, 63, 52-83 (2002)
[2] Buckingham, R.; Shearer, M.; Bertozzi, A., Thin film traveling waves and the Navier slip condition, SIAM Journal on Applied Mathematics, 63, 2, 722-744 (2002) · Zbl 1024.35038 · doi:10.1137/S0036139902401409
[3] Kumar, M.; Singh, N., Phase plane analysis and traveling wave solution of third order nonlinear singular problems arising in thin film evolution, Computers & Mathematics with Applications, 64, 9, 2886-2895 (2012) · Zbl 1268.76006 · doi:10.1016/j.camwa.2012.05.003
[4] Myers, T. G., Thin films with high surface tension, SIAM Review, 40, 3, 441-462 (1998) · Zbl 0908.35057 · doi:10.1137/S003614459529284X
[5] Momoniat, E., An investigation of an Emden-Fowler equation from thin film flow, Acta Mechanica Sinica, 28, 2, 300-307 (2012) · Zbl 1288.76011 · doi:10.1007/s10409-012-0007-9
[6] Constantin, P.; Dupont, T. F.; Goldstein, R. E.; Kadanoff, L. P.; Shelley, M. J.; Zhou, S.-M., Droplet breakup in a model of the Hele-Shaw cell, Physical Review E, 47, 6, 4169-4181 (1993) · doi:10.1103/PhysRevE.47.4169
[7] Knüpfer, H., Well-posedness for the Navier slip thin-film equation in the case of partial wetting, Communications on Pure and Applied Mathematics, 64, 9, 1263-1296 (2011) · Zbl 1227.35146 · doi:10.1002/cpa.20376
[8] Greenspan, H. P., On the motion of a small viscous droplet that wets a surface, Journal of Fluid Mechanics, 84, 1, 125-143 (1978) · Zbl 0373.76040
[9] King, J. R., Two generalisations of the thin film equation, Mathematical and Computer Modelling, 34, 7-8, 737-756 (2001) · Zbl 1001.35073 · doi:10.1016/S0895-7177(01)00095-4
[10] Wang, M.; Li, X.; Zhang, J., The \((G^\prime / G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372, 4, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[11] Kilicman, A.; Abazari, R., Travelling wave solutions of the Schrdinger-Boussinesq system, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.65162 · doi:10.1155/2012/198398
[12] Jafari, H.; Kadkhoda, N.; Biswas, A., The \((G^\prime / G)\)-expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres, Journal of King Saud University Science, 1, 57-62 (2012) · doi:10.1016/j.jksus.2012.02.002
[13] Ayhan, B.; Bekir, A., The \((G^\prime / G)\)-expansion method for the nonlinear lattice equations, Communications in Nonlinear Science and Numerical Simulation, 17, 3490-3498 (2012) · Zbl 1254.39003 · doi:10.1016/j.cnsns.2012.01.009
[14] Malik, A.; Chand, F.; Kumar, H.; Mishra, S. C., Exact solutions of the Bogoyavlenskii equation using the multiple \((G' \operatorname{/G})\)-expansion method, Computers & Mathematics with Applications, 64, 9, 2850-2859 (2012) · Zbl 1268.35108 · doi:10.1016/j.camwa.2012.04.018
[15] Zayed, E. M. E.; Abdelaziz, M. A. M., The two-variable \((G^\prime / G, 1 / G)\)-expansion method for solving the nonlinear KdV-mKdV equation, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.35086 · doi:10.1155/2012/725061
[16] Naher, H.; Abdullah, F. A., Some new traveling wave solutions of the nonlinear reaction diffusion equation by using the improved \((G' / G)\)-expansion method, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.35123 · doi:10.1155/2012/871724
[17] Elboree, M. K., Hyperbolic and trigonometric solutions for some nonlinear evolution equations, Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4085-4096 (2012) · Zbl 1248.35183 · doi:10.1016/j.cnsns.2012.03.029
[18] Naher, H.; Abdullah, F. A., The \((G^\prime / G)\)-expansion method for abundant traveling wave solutions of Caudrey-Dodd-Gibbon equation, Mathematical Problems in Engineering, 2011 (2011) · Zbl 1235.65152 · doi:10.1155/2011/218216
[19] Kabir, M. M.; Borhanifar, A.; Abazari, R., Application of \((G^\prime / G)\)-expansion method to regularized long wave (RLW) equation, Computers & Mathematics with Applications, 61, 8, 2044-2047 (2011) · Zbl 1219.65143 · doi:10.1016/j.camwa.2010.08.064
[20] Feng, J.; Li, W.; Wan, Q., Using \((G^\prime / G)\)-expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation, Applied Mathematics and Computation, 217, 12, 5860-5865 (2011) · Zbl 1209.35115 · doi:10.1016/j.amc.2010.12.071
[21] Malik, A.; Chand, F.; Mishra, S. C., Exact travelling wave solutions of some nonlinear equations by \((G^\prime / G)\)-expansion method, Applied Mathematics and Computation, 216, 9, 2596-2612 (2010) · Zbl 1195.35254 · doi:10.1016/j.amc.2010.03.103
[22] Zhang, H., New application of the \((G^\prime / G)\)-expansion method, Communications in Nonlinear Science and Numerical Simulation, 14, 3220-3225 (2009) · Zbl 1221.35380
[23] Bertozzi, A. L.; Pugh, M., The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Communications on Pure and Applied Mathematics, 49, 2, 85-123 (1996) · Zbl 0863.76017 · doi:10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V
[24] Bertozzi, A. L.; Pugh, M., The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut-off of van der Waals interactions, Nonlinearity, 7, 6, 1535-1564 (1994) · Zbl 0811.35045 · doi:10.1088/0951-7715/7/6/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.