zbMATH — the first resource for mathematics

On positive solutions for \((p,q)\)-Laplace equations with two parameters. (English) Zbl 1328.35052
Summary: We study the existence and non-existence of positive solutions for the \((p,q)\)-Laplace equation \(-\Delta_pu-\Delta_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\), where \(p\neq q\), under the zero Dirichlet boundary condition in \(\Omega\). The main result of our research is the construction of a continuous curve in \((\alpha,\beta)\) plane, which becomes a threshold between the existence and non-existence of positive solutions. Furthermore, we provide the example of domains \(\Omega\) for which the corresponding first Dirichlet eigenvalue of \(-\Delta_p\) is not monotone w.r.t. \(p>1\).

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35B09 Positive solutions to PDEs
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI arXiv
[1] Allegretto, W; Huang, Y-X, A picone’s identity for the \(p\)-Laplacian and applications, Nonlinear Anal. Theory Methods Appl., 32, 819-830, (1998) · Zbl 0930.35053
[2] Anane, A.: Simplicité et isolation de la premiere valeur propre du \(p\)-Laplacien avec poids. Comptes rendus de l’Acad. des Sci. Sér. 1 Math. 305(16), 725-728 (1987) · Zbl 0633.35061
[3] Benedikt, J; Drábek, P, Estimates of the principal eigenvalue of the \(p\)-Laplacian, J. Math. Anal. Appl., 393, 311-315, (2012) · Zbl 1245.35075
[4] Benouhiba, N; Belyacine, Z, A class of eigenvalue problems for the \((p, q)\)-Laplacian in \(R^n\), Int. J. Pure Appl. Math., 50, 727-737, (2012)
[5] Benouhiba, N; Belyacine, Z, On the solutions of the \((p, q)\)-Laplacian problem at resonance, Nonlinear Anal. TMA, 77, 74-81, (2013) · Zbl 1255.35036
[6] Bobkov, V., Il’yasov, Y.: Maximal existence domains of positive solutions for two-parametric systems of elliptic equations (2014). arXiv:1406.5275 · Zbl 1294.35051
[7] Cherfils, L; Il’Yasov, Y, On the stationary solutions of generalized reaction diffusion equations with \(p\)&\(q\)-Laplacian, Commun. Pure Appl. Math., 4, 9-22, (2005) · Zbl 1210.35090
[8] Cuesta, M; Figueiredo, D; Gossez, J-P, The beginning of the fučik spectrum for the \(p\)-Laplacian, J. Differ. Equ., 159, 212-238, (1999) · Zbl 0947.35068
[9] Drábek, P., Milota, J.: Methods of Nonlinear Analysis: Applications to Differential Equations. Springer, New York (2013) · Zbl 1264.35001
[10] Gongbao, L; Guo, Z, Multiple solutions for the \(p\)&\(q\)-Laplacian problem with critical exponent, Acta Math. Sci., 29, 903-918, (2009) · Zbl 1212.35125
[11] Huang, Y, On the eigenvalues of the \(p\)-Laplacian with varying \(p\), Proc. Am. Math. Soc., 125, 3347-3354, (1997) · Zbl 0882.35087
[12] Il’yasov, Y, On positive solutions of indefinite elliptic equations, Comptes Rendus de l’Acad. des Sci.-Ser. I-Math., 333, 533-538, (2001) · Zbl 0987.35065
[13] Ilasov, YS, Bifurcation calculus by the extended functional method, Funct. Anal. Appl., 41, 18-30, (2007) · Zbl 1124.35307
[14] Kajikiya, R., Tanaka, M., Tanaka, S.: Bifurcation of positive solutions for the one dimensional \((p, q)\)-Laplace equation. (submitted) · Zbl 1370.34038
[15] Kawohl, B; Fridman, V, Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carol., 44, 659-667, (2003) · Zbl 1105.35029
[16] Lieberman, GM, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. Theory Methods Appl., 12, 1203-1219, (1988) · Zbl 0675.35042
[17] Lieberman, GM, The natural generalizationj of the natural conditions of ladyzhenskaya and ural’tseva for elliptic equations, Commun. Partial Differ. Equ., 16, 311-361, (1991) · Zbl 0742.35028
[18] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989) · Zbl 0676.58017
[19] Mihailescu, M, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal., 10, 701-708, (2011) · Zbl 1229.35031
[20] Miyajima, S; Motreanu, D; Tanaka, M, Multiple existence results of solutions for the Neumann problems via super-and sub-solutions, J. Funct. Anal., 262, 1921-1953, (2012) · Zbl 1276.35086
[21] Motreanu, D., Tanaka, M.: On a positive solution for \((p, q)\)-Laplace equation with indefinite weight. Minimax Theory Appl. (to appear) · Zbl 1334.35069
[22] Pucci, P., Serrin, J.: The Maximum Principle, vol. 73. Springer, New York (2007) · Zbl 1134.35001
[23] Ramos Quoirin, H, An indefinite type equation involving two \(p\)-Laplacians, J. Math. Anal. Appl., 387, 189-200, (2012) · Zbl 1229.35074
[24] Tanaka, M, Generalized eigenvalue problems for \((p, q)\)-Laplacian with indefinite weight, J. Math. Anal. Appl., 419, 1181-1192, (2014) · Zbl 1294.35051
[25] Tanaka, M, Uniqueness of a positive solution and existence of a sign-changing solution for \((p, q)\)-Laplace equation, J. Nonlinear Funct. Anal., 2014, 1-15, (2014)
[26] Yin, H; Yang, Z, Multiplicity of positive solutions to a \(p-q\)-Laplacian equation involving critical nonlinearity, Nonlinear Anal. Theory Methods Appl., 75, 3021-3035, (2012) · Zbl 1235.35123
[27] Zeidler, E.: Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization. Springer, New York (1985) · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.