×

Indefinite Morse 2-functions: broken fibrations and generalizations. (English) Zbl 1328.57019

A Morse 2-function is a generic smooth map from a manifold \(M^n\) to a surface, like classical Morse functions are generic smooth maps from \(M^n\) to \({\mathbb R}^1\). The singularities of 2-Morse functions are folds and cusps, where folds look locally like \((t, x_1,\ldots,x_{n-1})\to (t,f(x_1,\ldots,x_{n-1}))\) for a standard Morse singularity \(f\), and cusps look locally like \((t; x_1,\ldots,x_{n-1})\to(t, f_t(x_1,\ldots,x_{n-1}))\) for a standard birth \(f_t\) of a cancelling pair of Morse singularities.
The paper under review develops techniques for working with Morse 2-functions and generic homotopies between them, paying particular attention to avoiding definite folds, in which the modeling function \(f\) is a local extremum, and to guaranteeing connected fibers. When definite folds are avoided, the Morse 2-function (or generic homotopy) is said to be indefinite.
The main result is to extend the existence and uniqueness results to indefinite, Morse 2-functions with connected fibers. These results are proved for the general case that \(M^n\) is a manifold with boundary, mapping to a surface \(\Sigma^2\) with boundary. In the closed case the results specialize as follows.
For \(n>2\) a map \(f: M^n\to \Sigma^2\) from a closed \(n\)-manifold to a surface is homotopic to an indefinite Morse 2-function if and only if \(f_*(\pi_1M)\) has finite index in \(\pi_1\Sigma\). (The necessity of this condition is due to O. Saeki [Kyushu J. Math. 60, No. 2, 363–382 (2006; Zbl 1113.57016)]). If \(n>3\), then any such indefinite Morse 2-functions are homotopic through an indefinite generic homotopy.

MSC:

57M50 General geometric structures on low-dimensional manifolds
57R17 Symplectic and contact topology in high or arbitrary dimension

Citations:

Zbl 1113.57016
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S Akbulut, \cC Karakurt, Every \(4\)-manifold is BLF, J. Gökova Geom. Topol. 2 (2008) 83 · Zbl 1209.57015
[2] D Asimov, Round handles and nonsingular Morse-Smale flows, Ann. of Math. 102 (1975) 41 · Zbl 0316.57020 · doi:10.2307/1970972
[3] D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 · Zbl 1077.53069 · doi:10.2140/gt.2005.9.1043
[4] R I Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) · Zbl 1179.57033 · doi:10.1093/imrn/rnn101
[5] R I Baykur, N Sunukjian, Round handles, logarithmic transforms and smooth \(4\)-manifolds, J. Topol. 6 (2013) 49 · Zbl 1297.57064 · doi:10.1112/jtopol/jts027
[6] J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudoisotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5 · Zbl 0213.25202 · doi:10.1007/BF02684687
[7] D T Gay, R C Kirby, Constructing Lefschetz-type fibrations on four-manifolds, Geom. Topol. 11 (2007) 2075 · Zbl 1135.57009 · doi:10.2140/gt.2007.11.2075
[8] D T Gay, R C Kirby, Fiber-connected, indefinite Morse \(2\)-functions on connected \(n\)-manifolds, Proc. Natl. Acad. Sci. USA 108 (2011) 8122 · Zbl 1256.57024 · doi:10.1073/pnas.1018465108
[9] A Hatcher, J Wagoner, Pseudoisotopies of compact manifolds, Astérisque 6, Soc. Math. France (1973)
[10] K Honda, Local properties of self-dual harmonic \(2\)-forms on a \(4\)-manifold, J. Reine Angew. Math. 577 (2004) 105 · Zbl 1065.53066 · doi:10.1515/crll.2004.2004.577.105
[11] K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 · Zbl 1071.58002 · doi:10.1216/rmjm/1181069872
[12] R C Kirby, A calculus for framed links in \(S^3\), Invent. Math. 45 (1978) 35 · Zbl 0377.55001 · doi:10.1007/BF01406222
[13] R C Kirby, P Melvin, P Teichner, Cohomotopy sets of \(4\)-manifolds (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 161 · Zbl 1273.57012 · doi:10.2140/gtm.2012.18.161
[14] C LeBrun, Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997) 535 · Zbl 0901.53028
[15] Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 · Zbl 1164.57006 · doi:10.2140/gt.2009.13.277
[16] T Perutz, Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 · Zbl 1143.53079 · doi:10.2140/gt.2007.11.759
[17] T Perutz, Lagrangian matching invariants for fibred four-manifolds, II, Geom. Topol. 12 (2008) 1461 · Zbl 1144.53104 · doi:10.2140/gt.2008.12.1461
[18] O Saeki, Elimination of definite fold, Kyushu J. Math. 60 (2006) 363 · Zbl 1113.57016 · doi:10.2206/kyushujm.60.363
[19] C H Taubes, Seiberg-Witten and Gromov invariants for symplectic \(4\)-manifolds (editor R Wentworth), First Int. Press Lecture Series 2, International Press (2000) · Zbl 0967.57001
[20] L R Taylor, The principal fibration sequence and the second cohomotopy set (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 235 · Zbl 1270.55012 · doi:10.2140/gtm.2012.18.235
[21] M Usher, The Gromov invariant and the Donaldson-Smith standard surface count, Geom. Topol. 8 (2004) 565 · Zbl 1055.53064 · doi:10.2140/gt.2004.8.565
[22] G Wassermann, Stability of unfoldings in space and time, Acta Math. 135 (1975) 57 · Zbl 0315.58010 · doi:10.1007/BF02392016
[23] J Williams, The \(h\)-principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 · Zbl 1204.57027 · doi:10.2140/gt.2010.14.1015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.