Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at \(t=-1\). (English) Zbl 1328.57021

Let \(\Sigma_g\) be a closed oriented surface of genus \(g\). Its mapping class group \(\mathrm{Mod}_g\) acts on \(H_1(\Sigma_g;\mathbb{Z})\) and the kernel of its action is the Torelli group \(\mathcal{I}_g\). If we restrict ourselves to homeomorphisms which commute with a hyperelliptic involution \(\iota\), then we obtain the hyperelliptic mapping class group \(\mathrm{SMod}_g\); the hyperelliptic Torelli group \(\mathcal{SI}_g\) is, by definition, \(\mathrm{SMod}_g\cap \mathcal{I}_g\). The main result of the paper is Theorem A which states that for \(g\geq 0\) the group \(\mathcal{SI}_g\) is generated by Dehn twists about symmetric (with respect to \(\iota\)) separating curves. The authors note that Theorem A was known earlier for \(n\leq 6\).
The main idea of the proof of Theorem A is to reduce the problem to an investigation of braid groups and their representations. If we remove an \(\iota\)-invariant disk from \(\Sigma_g\) we obtain a surface \(\Sigma_g^1\) with a boundary. The involution \(\iota\) on \(\Sigma_g\) induces an involution \(\iota^1\) on \(\Sigma_g^1\) which fixes \(2g+1\) points. The images of the points under the factor-map \(\Sigma_g^1\to\Sigma_g^1/\iota^1\) allow us to consider \(\Sigma_g^1/\iota^1\) as a disk \(D_{2g+1}\) with \(2g+1\) marked points and to use the tool of representaions of the braid group \(B_{2g+1}\). In particular, the Burau representation \(\beta_{2g+1}\) of \(B_{2g+1}\) to \(\mathrm{GL}_{2g+1}(\mathbb{Z}[t,t^{-1}])\) is used for \(t=-1\). The representation \(\beta_n\) can be defined not only for odd \(n=2g+1\) but for all integers \(n\geq1\). Theorem C states that the group \(\mathcal{BI}_n\) which is the kernel of \(\beta_n: B_n\to\mathrm{GL}_{n}(\mathbb{Z})\) is generated by squares of Dehn twists about curves in \(D_n\) surrounding odd numbers of marked points. Theorem C implies Theorem A.
In turn, Theorem A gives the opportunity to describe generators of the fundamental group of the branched locus \(\widetilde{\mathcal{H}}_g\) of the period mapping from Torelli space to the Siegel upper half-plane. At last, as R. Hain showed [Proc. Symp. Pure Math. 74, 57–70 (2006; Zbl 1222.14014)], Theorem A immediately implies Theorem B: for \(g\geq 0\), each component of \(\widetilde{\mathcal{H}}_g^c\) is simply connected. Here \(\widetilde{\mathcal{H}}_g^c\) is obtained from \(\widetilde{\mathcal{H}}_g\) by adding hyperelliptic curves of compact type.


57M60 Group actions on manifolds and cell complexes in low dimensions
57M05 Fundamental group, presentations, free differential calculus
57M12 Low-dimensional topology of special (e.g., branched) coverings
57M50 General geometric structures on low-dimensional manifolds


Zbl 1222.14014
Full Text: DOI arXiv


[1] Abramenko, P., Brown, K.S.: Buildings, Graduate Texts in Mathematics, 248. Springer, New York (2008) · Zbl 1214.20033
[2] A’Campo, N.: Tresses, monodromie et le groupe symplectique. Comment. Math. Helv. 54(2), 318-327 (1979) · Zbl 0441.32004 · doi:10.1007/BF02566275
[3] Arnol’d, V.I.: A remark on the branching of hyperelliptic integrals as functions of the parameters. Funkc. Anal. i Priložen. 2(3), 1-3 (1968)
[4] Artin, E.: Theory of braids. Ann. Math. 48(2), 101-126 (1947). · Zbl 0030.17703
[5] Band, G., Boyland, P.: The Burau estimate for the entropy of a braid. Algebr. Geom. Topol. 7, 1345-1378 (2007) · Zbl 1128.37028 · doi:10.2140/agt.2007.7.1345
[6] Birman, J.S.: On Siegel’s modular group. Math. Ann. 191, 59-68 (1971) · Zbl 0208.10601 · doi:10.1007/BF01433472
[7] Birman, J.S.: Braids, Links, and Mapping Class Groups. Princeton Univ. Press, Princeton, NJ (1974)
[8] Birman, J.S., Hilden, H.M.: On the mapping class groups of closed surfaces as covering spaces. In: Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y.), 81-115. Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, NJ (1969) · Zbl 0217.48602
[9] Birman, J. S., Wajnryb, B.: Presentations of the mapping class group. Errata: “<InlineEquation ID=”IEq2199“> <EquationSource Format=”TEX“>\[3\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> 3-fold branched coverings and the mapping class group of a surface” [in Geometry and topology (College Park, MD, 1983/84), 24-46, Lecture Notes in Math., 1167, Springer, Berlin, 1985] and “A simple presentation of the mapping class group of an orientable surface” [Israel J. Math. 45 (1983), no. 2-3, 157-174] by Wajnryb. Israel J. Math. 88(1-3), 425-427 (1994) · Zbl 0414.20034
[10] Björner, A.: Nerves, fibers and homotopy groups. J. Combin. Theory Ser. A 102(1), 88-93 (2003) · Zbl 1030.55006 · doi:10.1016/S0097-3165(03)00015-3
[11] Brendle, T., Margalit, D.: Point pushing, homology, and the hyperelliptic involution. Michigan Math. J. 62(3), 451-473 (2013) · Zbl 1279.57013
[12] Brendle, T., Margalit, D.: Factoring in the hyperelliptic Torelli group. arXiv:1202.2365 · Zbl 1371.57002
[13] Brendle, T., Childers, L., Margalit, D.: Cohomology of the hyperelliptic Torelli group. Israel J. Math. 195, 613-630 (2013) · Zbl 1278.57027 · doi:10.1007/s11856-012-0075-3
[14] Charney, R.: A generalization of a theorem of Vogtmann. J. Pure Appl. Algebr. 44(1-3), 107-125 (1987) · Zbl 0615.20024 · doi:10.1016/0022-4049(87)90019-3
[15] Childers, L.: Subgroups of the Torelli group. Thesis, Louisiana State University (2010) · Zbl 0579.57007
[16] Day, M., Putman, A.: The complex of partial bases for \[F_n\] Fn and finite generation of the Torelli subgroup of \[(F_n)\](Fn), to appear in Geom. Dedicata (2014) · Zbl 1294.20041
[17] Farb, B., Margalit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series, 49. Princeton Univ. Press, Princeton, NJ (2012) · Zbl 1245.57002
[18] Funar, L., Kohno, T.: On Burau representations at roots of unity. Geom. Dedicata. 169, 145-163 (2014) · Zbl 1298.57002 · doi:10.1007/s10711-013-9847-0
[19] Gambaudo, J.-M., Ghys, É.: Braids and signatures. Bull. Soc. Math. France 133(4), 541-579 (2005) · Zbl 1103.57001
[20] Hain, R.: Finiteness and Torelli spaces. In: Problems on mapping class groups and related topics, 57-70, Proc. Sympos. Pure Math., 74 Amer. Math. Soc., Providence, RI (2006) · Zbl 1222.14014
[21] Hatcher, A., Margalit, D.: Generating the Torelli group. Enseign. Math. 58, 165-188 (2012) · Zbl 1273.57011 · doi:10.4171/LEM/58-1-8
[22] Johnson, D.L.: Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc. 75(1), 119-125 (1979) · Zbl 0407.57003 · doi:10.1090/S0002-9939-1979-0529227-4
[23] Johnson, D.: An abelian quotient of the mapping class group \[{\cal I}_g\] Ig. Math. Ann. 249(3), 225-242 (1980) · Zbl 0409.57009
[24] Johnson, D.: The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves. Topology 24(2), 113-126 (1985) · Zbl 0571.57009 · doi:10.1016/0040-9383(85)90049-7
[25] Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203-271 (2002) · Zbl 1035.53122 · doi:10.1090/S0894-0347-01-00374-5
[26] Maazen, H.: Homology Stability for the General Linear Group. Thesis. University of Utrecht (1979) · Zbl 0391.57009
[27] Magnus, W., Peluso, A.: On a theorem of V. I. Arnol’d. Comm. Pure Appl. Math. 22, 683-692 (1969) · Zbl 0184.49001 · doi:10.1002/cpa.3160220508
[28] Margalit, D., McCammond, J.: Geometric presentations for the pure braid group. J. Knot Theory Ramif. 18(1), 1-20 (2009) · Zbl 1187.20048 · doi:10.1142/S0218216509006859
[29] Margalit, D., Putman, A.: Natural presentations for congruence subgroups, unpublished · Zbl 1103.57001
[30] McCullough, D., Miller, A.: The genus \[22\] Torelli group is not finitely generated. Topol. Appl. 22(1), 43-49 (1986) · Zbl 0579.57007 · doi:10.1016/0166-8641(86)90076-3
[31] McMullen, C.: Braid groups and Hodge theory. Math. Ann. 355(3), 893-946 (2013) · Zbl 1290.30050 · doi:10.1007/s00208-012-0804-2
[32] Mess, G.: The Torelli groups for genus \[22\] and \[33\] surfaces. Topology 31(4), 775-790 (1992) · Zbl 0772.57025 · doi:10.1016/0040-9383(92)90008-6
[33] Morifuji, T.: On Meyer’s function of hyperelliptic mapping class groups. J. Math. Soc. Japan 55(1), 117-129 (2003) · Zbl 1031.57017 · doi:10.2969/jmsj/1196890845
[34] Newman, M., Smart, J.R.: Symplectic modulary groups. Acta Arith 9, 83-89 (1964) · Zbl 0135.06502
[35] Powell, J.: Two theorems on the mapping class group of a surface. Proc. Am. Math. Soc. 68(3), 347-350 (1978) · Zbl 0391.57009 · doi:10.1090/S0002-9939-1978-0494115-8
[36] Putman, A.: Cutting and pasting in the Torelli group. Geom. Topol. 11, 829-865 (2007) · Zbl 1157.57010 · doi:10.2140/gt.2007.11.829
[37] Putman, A.: An infinite presentation of the Torelli group. Geom. Funct. Anal. 19(2), 591-643 (2009) · Zbl 1178.57001 · doi:10.1007/s00039-009-0006-6
[38] Putman, A.: Obtaining presentations from group actions without making choices. Algebr. Geom. Topol. 11(3), 1737-1766 (2011) · Zbl 1247.20041 · doi:10.2140/agt.2011.11.1737
[39] Quillen, D.: Homotopy properties of the poset of nontrivial \[p\] p subgroups of a group. Adv. Math. 28(2), 101-128 (1978) · Zbl 0388.55007 · doi:10.1016/0001-8708(78)90058-0
[40] Smythe, N.F.: The Burau representation of the braid group is pairwise free. Arch. Math. (Basel) 32(4), 309-317 (1979) · Zbl 0414.20034 · doi:10.1007/BF01238504
[41] T. N. Venkataramana, Image of the Burau representation at \[d\] d-th roots of unity. Ann. Math. (2) 179(3), 1041-1083 (2014) · Zbl 1345.20051
[42] Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45(2-3), 157-174 (1983) · Zbl 0533.57002 · doi:10.1007/BF02774014
[43] Yu, J-K.: Toward a proof of the Cohen-Lenstra conjecture in the function field case, preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.