×

zbMATH — the first resource for mathematics

A vector of Dirichlet processes. (English) Zbl 1328.60124
Summary: Random probability vectors are of great interest especially in view of their application to statistical inference. Indeed, they can be used for identifying the de Finetti mixing measure in the representation of the law of a partially exchangeable array of random elements taking values in a separable and complete metric space. In this paper we describe the construction of a vector of Dirichlet processes based on the normalization of an exchangeable vector of completely random measures that are jointly infinitely divisible. After deducing the form of the multivariate Laplace exponent associated to the vector of the gamma completely random measures, we analyze some of their distributional properties. Our attention particularly focuses on the dependence structure and the specific partition probability function induced by the proposed vector.

MSC:
60G57 Random measures
60G09 Exchangeability for stochastic processes
62F15 Bayesian inference
Software:
DPpackage
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Constantines, G.M. and Savits, T.H. (1996). A multivariate version of the Faa di Bruno formula., Trans. Amer. Math. Soc. 348 , 503-520. · Zbl 0846.05003
[2] Cifarelli, D.M. and Regazzini, E. (1978). Problemi statistici non parametrici in condizioni di scambiabilità parziale., Quaderni Istituto Matematica Finanziaria , Università di Torino Serie III. English translation available at: http://www.unibocconi.it/wps/allegatiCTP/CR-Scamb-parz[1].20080528.135739.pdf
[3] Cont, R. and Tankov, P. (2004)., Financial modelling with jump processes . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1052.91043
[4] Daley, D.J. and Vere-Jones, D. (2003)., An introduction to the theory of point processes. Vol. 1. Springer, New York. · Zbl 1026.60061
[5] de Finetti, B. (1938). Sur la condition de “équivalence partielle”. In, Actualités Scientifique et Industrielle 739 , 5-18. Hermann, Paris. · JFM 64.0517.08
[6] De Iorio, M., Müller, P., Rosner, G.L. and MacEachern, S.N. (2004). An ANOVA model for dependent random measures., J. Amer. Statist. Assoc. 99 , 205-215. · Zbl 1089.62513
[7] Dunson, D.B., Xue, Y. and Carin, L. (2008). The matrix stick-breaking process: flexible Bayes meta-analysis., J. Amer. Statist. Assoc. 103 , 317-327. · Zbl 05564491
[8] Dunson, D.B. and Park, J.-H. (2008). Kernel stick-breaking processes, Biometrika 95 , 307-323. · Zbl 1437.62448
[9] Epifani, I. and Lijoi, A. (2010). Nonparametric priors for vectors of survival functions., Statistica Sinica 20 , 1455-1484. · Zbl 1200.62121
[10] Favaro, S., Lijoi, A. and Prünster, I. (2012). Conditional formulae for Gibbs-type exchangeable random partitions., Ann. Appl. Probab. , · Zbl 1287.60046
[11] Favaro, S., Lijoi, A. and Prünster, I. (2012). A new estimator of the discovery probability., Biometrics 68 , 1188-1196. · Zbl 1259.62110
[12] Griffin, J.E. and Steel, M.F.J. (2006). Order-based dependent Dirichlet processes., J. Amer. Statist. Assoc. 101 , 179-194. · Zbl 1118.62360
[13] Hjort, N.L., Holmes, C.C., Müller, P. and Walker, S.G. (Eds.) (2010)., Bayesian Nonparametrics. Cambridge University Press.
[14] James, L.F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for normalized random measures with independent increments., Scand. J. Statist. 36 , 76-97. · Zbl 1190.62052
[15] Jara, A., Hanson, T., Quintana, F.A., Müller, P. and Rosner, G. (2011). DPpackage: Bayesian non- and semi-parametric modelling in R., J. Stat. Soft. 40 , 1-30.
[16] Kingman, J.F.C. (1975). Random discrete distributions (with discussion)., J. Roy. Statist. Soc. Ser. B 37 , 1-22. · Zbl 0331.62019
[17] Leisen, F. and Lijoi, A. (2011). Vectors of Poisson-Dirichlet processes., J. Multivariate Anal. 102 , 482-495. · Zbl 1207.62062
[18] Lijoi, A., Mena, R.H. and Prünster I. (2007). Bayesian nonparametric estimation of the probability of discovering new species., Biometrika 94 , 769-786. · Zbl 1156.62374
[19] Lijoi, A., Nipoti, B. and Prünster, I. (2011). Bayesian inference with dependent normalized completely random measures., Carlo Alberto Notebooks 224 . · Zbl 1309.60048
[20] Lijoi, A. and Prünster, I. (2010). Beyond the Dirichlet process., Bayesian Nonparametrics (Holmes, C.C., Hjort, N.L., Müller, P. and Walker, S.G., Eds.), 80-136, Cambridge University Press, Cambridge.
[21] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates., Ann. Statist. 12 , 351-357. · Zbl 0557.62036
[22] MacEachern, S.N. (1999). Dependent nonparametric processes. In, ASA Proceedings of the Section on Bayesian Statistical Science , Alexandria, VA: American Statistical Association.
[23] MacEachern, S.N. (2000). Dependent Dirichlet processes., Technical Report , Ohio State University. · Zbl 1281.62070
[24] Müller, P., Quintana, F. and Rosner, G. (2004). A method for combining inference across related nonparametric Bayesian models., J. R. Stat. Soc. Ser. B 66 , 735-749. · Zbl 1046.62053
[25] Nelsen, R.B. (2006)., An introduction to copulas . Springer, New York. · Zbl 1152.62030
[26] Rao, V.A. and Teh, Y.W. (2009). Spatial normalized Gamma processes. In, Advances in Neural Information Processing Systems 22 .
[27] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments., Ann. Statist. 31 , 560-585. · Zbl 1068.62034
[28] Rodríguez, A., Dunson, D. and Gelfand, A. (2008). The nested Dirichlet process., J. Amer. Statist. Assoc. 103 , 1131-1144. · Zbl 1205.62062
[29] Trippa, L. and Favaro, S. (2012). A class of normalized random measures with an exact predictive sampling scheme., Scand. J. Statist. 39 , 440-460. · Zbl 1323.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.