×

Asymptotic hitting probabilities for the Bolthausen-Sznitman coalescent. (English) Zbl 1328.60173

Summary: The probability \(h(n, m)\) that the block counting process of the Bolthausen-Sznitman \(n\)-coalescent ever visits the state \(m\) is analyzed. It is shown that the asymptotic hitting probabilities \(h(m) = \lim_{n\to\infty}h(n, m)\), \(m \in \mathbb N\), exist and an integral formula for \(h(m)\) is provided. The proof is based on generating functions and exploits a certain convolution property of the Bolthausen-Sznitman coalescent. It follows that \(h(m) \sim 1/\log m\) as \(m \to \infty\). An application to linear recursions is indicated.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60C05 Combinatorial probability
05C05 Trees
92D15 Problems related to evolution
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Aliprantis, C. D. and Tourky, R. (2007). Cones and Duality (Graduate Studies Math. 84 ). American Mathematical Society, Providence, RI. · Zbl 1127.46002
[2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge University Press. · Zbl 0617.26001
[3] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197 , 247-276. · Zbl 0927.60071 · doi:10.1007/s002200050450
[4] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Process. Appl. 117 , 1404-1421. · Zbl 1129.60069 · doi:10.1016/j.spa.2007.01.011
[5] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 , 319-336. · Zbl 1187.05068 · doi:10.1002/rsa.20233
[6] Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics . Cambridge University Press. · Zbl 1165.05001
[7] Gnedin, A. (2004). The Bernoulli sieve. Bernoulli 10 , 79-96. · Zbl 1044.60005 · doi:10.3150/bj/1077544604
[8] Gnedin, A., Iksanov, A. and Marynych, A. (2011). On \(\Lambda\)-coalescents with dust component. J. Appl. Prob. 48 , 1133-1151. · Zbl 1242.60077 · doi:10.1239/jap/1324046023
[9] Meir, A. and Moon, J. W. (1970). Cutting down random trees. J. Austral. Math. Soc. 11 , 313-324. · Zbl 0196.27602 · doi:10.1017/S1446788700006698
[10] Meir, A. and Moon, J. W. (1974). Cutting down recursive trees. Math. Biosci. 21 , 173-181. · Zbl 0288.05102 · doi:10.1016/0025-5564(74)90013-3
[11] Möhle, M. (2005). Convergence results for compound Poisson distributions and applications to the standard Luria-Delbrück distribution. J. Appl. Prob. 42 , 620-631. · Zbl 1086.60014 · doi:10.1239/jap/1127322016
[12] Norris, J. R. (1997). Markov Chains . Cambridge University Press. · Zbl 0873.60043 · doi:10.1017/CBO9780511810633
[13] Panholzer, A. (2004). Destruction of recursive trees. In Mathematics and Computer Science III, Birkhäuser, Basel, pp. 267-280. · Zbl 1060.05022 · doi:10.1007/978-3-0348-7915-6_29
[14] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[15] Roman, S. (1984). The Umbral Calculus . Academic Press. · Zbl 0536.33001
[16] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 , 1116-1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.