×

Efficient finite element methodology based on Cartesian grids: application to structural shape optimization. (English) Zbl 1328.74081

Summary: This work presents an analysis methodology based on the use of the Finite Element Method (FEM) nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs). The proposed methodology, so-called cg-FEM (Cartesian grid FEM), has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain’s geometry. The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar entities. The cg-FEM methodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress fields (for which a discretization error estimator in energy norm is available) that will be the output of the analysis. All this results in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
49Q10 Optimization of shapes other than minimal surfaces
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74P15 Topological methods for optimization problems in solid mechanics

Software:

XFEM; Matlab
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Cottrell, J. A.; Hughes, T. J. R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley · Zbl 1378.65009
[2] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46, 1, 131-150 (1999) · Zbl 0955.74066
[3] Sukumar, N.; Prévost, J. H., Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation, International Journal of Solids and Structures, 40, 26, 7513-7537 (2003) · Zbl 1063.74102
[4] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Computer Methods in Applied Mechanics and Engineering, 190, 32-33, 4081-4193 (2001) · Zbl 0997.74069
[5] Strouboulis, T.; Zhang, L.; Babuška, I., Assessment of the cost and accuracy of the generalized FEM, International Journal for Numerical Methods in Engineering, 69, 2, 250-283 (2007) · Zbl 1194.74474
[6] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering, 139, 1-4, 289-314 (1996) · Zbl 0881.65099
[7] Stolarska, M.; Chopp, D. L.; Moës, N.; Belytschko, T., Modelling crack growth by level sets in the extended finite element method, International Journal for Numerical Methods in Engineering, 51, 8, 943-960 (2001) · Zbl 1022.74049
[8] Moumnassi, M.; Belouettar, S.; Béchet, E.; Bordas, S. P.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces, Computer Methods in Applied Mechanics and Engineering, 200, 5-8, 774-796 (2011) · Zbl 1225.65111
[9] Lian, W. D.; Legrain, G.; Cartraud, P., Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches, Computational Mechanics, 51, 3, 279-293 (2012)
[10] Legrain, G.; Chevaugeon, N.; Dréau, K., High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation, Computer Methods in Applied Mechanics and Engineering, 241-244, 172-189 (2012) · Zbl 1353.74071
[11] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Computer Methods in Applied Mechanics and Engineering, 199, 41-44, 2680-2686 (2010) · Zbl 1231.65207
[12] Heikkola, E.; Kuznetsov, Y. A.; Lipnikov, K. N., Fictitious domain methods for the numerical solution of three-dimensional acoustic scattering problems, Journal of Computational Acoustics, 7, 3, 161-193 (1999) · Zbl 1360.76140
[13] Hetmaniuk, U.; Farhat, C., A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems, Finite Elements in Analysis and Design, 39, 8, 707-725 (2003) · Zbl 1032.76595
[14] Farhat, C.; Hetmaniuk, U., A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: dirichlet boundary conditions, International Journal for Numerical Methods in Engineering, 54, 9, 1309-1332 (2002) · Zbl 1008.76039
[15] Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W., An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, Journal of Computational Physics, 156, 2, 209-240 (1999) · Zbl 0957.76043
[16] Jahangirian, A.; Shoraka, Y., Adaptive unstructured grid generation for engineering computation of aerodynamic flows, Mathematics and Computers in Simulation, 78, 5-6, 627-644 (2008) · Zbl 1143.76041
[17] Preusser, T.; Rumpf, M.; Schwen, L., Finite element simulation of bone microstructures, Proceedings of the 14th FE Workshop
[18] Silva Santos, C. M.; Greaves, D. M., Using hierarchical Cartesian grids with multigrid acceleration, International Journal for Numerical Methods in Engineering, 69, 8, 1755-1774 (2007) · Zbl 1194.76183
[19] Ramière, I.; Angot, P.; Belliard, M., Fictitious domain methods to solve convection-diffusion problems with general boundary conditions, Proceedings of the 17th Computational Fluid Dynamics Conference AIAA
[20] DeRose, G.; Díaz, A. R., Solving three-dimensional layout optimization problems using fixed scale wavelets, Computational Mechanics, 25, 2, 274-285 (2000) · Zbl 0976.74050
[21] Jang, G.; Kim, Y.; Choy, K., Remesh-free shape optimization using the wavelet-Galerkin method, International Journal of Solids and Structrures, 41, 22-23, 6465-6483 (2004) · Zbl 1179.74099
[22] Mäkinen, R. A. E.; Rossi, T.; Toivanen, J., A moving mesh fictitious domain approach for shape optimization problems, Mathematical Modelling and Numerical Analysis, 34, 1, 31-45 (2000) · Zbl 0948.65064
[23] Victoria, M.; Querin, O. M.; Martí, P., Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces, Finite Elements in Analysis and Design, 46, 3, 229-237 (2010)
[24] Parussini, L.; Pediroda, V., Fictitious domain approach with \(h p\)-finite element approximation for incompressible fluid flow, Journal of Computational Physics, 228, 10, 3891-3910 (2009) · Zbl 1169.76037
[25] Bishop, J., Rapid stress analysis of geometrically complex domains using implicit meshing, Computational Mechanics, 30, 5-6, 460-478 (2003) · Zbl 1038.74626
[26] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[27] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, Journal of Computational Physics, 153, 2, 509-534 (1999) · Zbl 0953.76069
[28] García-Ruíz, M.; Steven, G., Fixed grid finite elements in elasticity problems, Engineering Computations, 16, 2, 145-164 (1999) · Zbl 0948.74059
[29] Daneshmand, F.; Kazemzadeh-Parsi, M. J., Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM, Finite Elements in Analysis and Design, 45, 11, 755-765 (2009)
[30] Bordas, S. P. A.; Rabczuk, T.; Hung, N. X.; Nguyen, V. P.; Natarajan, S.; Bog, T.; Quan, D. M.; Hiep, N. V., Strain smoothing in FEM and XFEM, Computers & Structures, 88, 23-24, 1419-1443 (2010)
[31] Simpson, R. N.; Bordas, S. P. A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100 (2012) · Zbl 1243.74193
[32] Scott, M.; Simpson, R.; Evans, J.; Lipton, S.; Bordas, S.; Hughes, T.; Sederberg, T., Isogeometric boundary element analysis using unstructured T-splines, Computer Methods in Applied Mechanics and Engineering, 254, 197-221 (2013) · Zbl 1297.74156
[33] Hughes, T. J. R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[34] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, International Journal for Numerical Methods in Engineering, 24, 2, 337-357 (1987) · Zbl 0602.73063
[35] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, International Journal for Numerical Methods in Engineering, 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[36] Wiberg, N. E.; Abdulwahab, F.; Ziukas, S., Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions, International Journal for Numerical Methods in Engineering, 37, 20, 3417-3440 (1994) · Zbl 0825.73777
[37] Blacker, T.; Belytschko, T., Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements, International Journal for Numerical Methods in Engineering, 37, 3, 517-536 (1994) · Zbl 0789.73064
[38] Ramsay, A. C. A.; Maunder, E. A. W., Effective error estimation from continuous, boundary admissible estimated stress fields, Computers & Structures, 61, 2, 331-343 (1996) · Zbl 0900.73821
[39] Ródenas, J. J.; Tur, M.; Fuenmayor, F. J.; Vercher, A., Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique, International Journal for Numerical Methods in Engineering, 70, 6, 705-727 (2007) · Zbl 1194.74470
[40] Díez, P.; Ródenas, J. J.; Zienkiewicz, O. C., Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error, International Journal for Numerical Methods in Engineering, 69, 10, 2075-2098 (2007) · Zbl 1194.74382
[41] Ródenas, J. J.; Giner, E.; Fuenmayor, F. J.; González-Estrada, O. A., Accurate recoverytype error estimation for linear elastic fracture mechanics in FEM and XFEM based on a singular+smooth field splitting, Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS ’07), International Center for Numerical Methods in Engineering (CIMNE)
[42] Ródenas, J. J.; González-Estrada, O. A.; Díez, P.; Fuenmayor, F. J., Accurate recovery-based upper error bounds for the extended finite element framework, Computer Methods in Applied Mechanics and Engineering, 199, 37-40, 2607-2621 (2010) · Zbl 1231.74437
[43] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 1008.65076
[44] Xiao, Q. Z.; Karihaloo, B. L., Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, International Journal for Numerical Methods in Engineering, 66, 9, 1378-1410 (2006) · Zbl 1122.74529
[45] Bordas, S. P. A.; Duflot, M., Derivative recovery and a posteriori error estimate for extended finite elements, Computer Methods in Applied Mechanics and Engineering, 196, 35-36, 3381-3399 (2007) · Zbl 1173.74401
[46] Bordas, S. P. A.; Duflot, M.; Le, P., A simple error estimator for extended finite elements, Communications in Numerical Methods in Engineering, 24, 11, 961-971 (2008) · Zbl 1156.65093
[47] Duflot, M.; Bordas, S. P. A., A posteriori error estimation for extended finite elements by an extended global recovery, International Journal for Numerical Methods in Engineering, 76, 8, 1123-1138 (2008) · Zbl 1195.74171
[48] Ródenas, J. J.; González-Estrada, O. A.; Tarancón, J. E.; Fuenmayor, F. J., A recovery-type error estimator for the extended finite element method based on singular \(+\) smooth stress field splitting, International Journal for Numerical Methods in Engineering, 76, 4, 545-571 (2008) · Zbl 1195.74194
[49] Ródenas, J. J.; Tarancón, J. E.; Albelda, J.; Roda, A.; Fuenmayor, F. J.; Díez, P.; Wiberg, N. E., Hierarchical properties in elements obtained by subdivision: a hierarquical h-adaptivity program, Adaptive Modeling and Simulation 2005 (2005)
[50] Abel, J. F.; Shephard, M. S., An algorithm for multipoint constraints in finite element analysis, International Journal for Numerical Methods in Engineering, 14, 3, 464-467 (1979) · Zbl 0393.65017
[51] Farhat, C.; Lacour, C.; Rixen, D., Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm, International Journal for Numerical Methods in Engineering, 43, 6, 997-1016 (1998) · Zbl 0944.74071
[52] Loon, R.; Anderson, P.; Hart, J.; Baaijens, F., A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, International Journal for Numerical Methods in Fluids, 46, 5, 533-544 (2004) · Zbl 1060.76582
[53] Guo, B.; Babuška, I., The h-p version of the finite element method, Computational Mechanics, 1, 1, 21-41 (1986) · Zbl 0634.73058
[54] Storn, R.; Price, K., Differential evolution-a simple and efficient adaptive scheme for global optimisation over continuous spaces, TR-95-012 (1995), Berkeley, Calif, USA: International Computer Science Institute, Berkeley, Calif, USA
[55] Ródenas, J. J.; Bugeda, G.; Albelda, J.; Oñate, E., On the need for the use of error-controlled finite element analyses in structural shape optimization processes, International Journal for Numerical Methods in Engineering, 87, 11, 1105-1126 (2011) · Zbl 1242.74068
[56] Löhner, R.; Cebral, J.; Castro, M.; Baum, J.; Luo, H.; Mestreau, E.; Soto, O.; Buscaglia, G.; Dari, E.; Zamonsky, O., Adaptive embedded unstructured grid methods, Mecánica computacional, 23 (2004), Bariloche, Argentina
[57] Fuenmayor, F. J.; Oliver, J. L., Criteria to achieve nearly optimal meshes in the \(h\)-adaptive finite element method, International Journal for Numerical Methods in Engineering, 39, 23, 4039-4061 (1996) · Zbl 0882.73065
[58] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity, International Journal for Numerical Methods in Engineering, 33, 7, 1365-1382 (1992) · Zbl 0769.73085
[59] Zienkiewicz, O. C.; Zhu, J. Z.; Wu, J., Superconvergent patch recovery techniques—some further tests, Communications in Numerical Methods in Engineering, 9, 3, 251-258 (1993) · Zbl 0778.73079
[60] Zienkiewicz, O. C.; Zhu, J. Z., Superconvergence and the superconvergent patch recovery, Finite Elements in Analysis and Design, 19, 1-2, 11-23 (1995) · Zbl 0875.73292
[61] Ródenas, J. J.; González-Estrada, O. A.; Díez, P.; Fuenmayor, F. J., Upper bounds of the error in the extended finite element method by using an equilibrated-stress patch recovery technique, Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS ’07), International Center for Numerical Methods in Engineering (CIMNE)
[62] Nadal, E.; Bordas, S.; Ródenas, J. J.; Tarancón, J. E.; Tur, M., Accurate stress recovery for the two-dimensional fixed grid finite element method, Procedings of the 10th International Conference on Computational Structures Technology
[63] Nadal, E.; González-Estrada, O. A.; Ródenas, J. J.; Bordas, S. P. A.; Fuenmayor, F. J., Error estimation and error bounding in energy norm based on a displacement recovery technique, Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS ’12), Eccomas
[64] Nadal, E.; González-Estrada, O.; Ródenas, J.; Fuenmayor, F., Report: Error estimation of recovered solution in FE analysis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.