×

zbMATH — the first resource for mathematics

Pseudospectra in non-Hermitian quantum mechanics. (English) Zbl 1328.81116
Let \( H \) be the harmonic oscillator Hamiltonian perturbed by imaginary shift. The authors derive a lower estimate for the resolvent of \( H \) of the form \( \ln \| ( H - z )^{ -1 } \| \geq C \sqrt{ \operatorname{Re} z } \), \( C > 0 \), in a parabolic region of the right half plane by semiclassical methods.

MSC:
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
47E05 General theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
Software:
Chebfun
PDF BibTeX XML Cite
Full Text: DOI arXiv Link
References:
[1] Recall that “self-adjointness“ of a densely defined operator H, i.e., H = H∗, is a much stronger property than being just “Hermitian” or “symmetric,“ i.e., HH∗. On the other hand, the terms “non-Hermitian” and “non-self-adjoint“ can be read as synonyms in the present paper, since we are concerned with a “fundamental non-self-adjointness” caused, for instance, by complex coefficients of differential operators, that is, we are not interested in closed symmetric non-self-adjoint operators here.
[2] Bounded and boundedly invertible Ω means \(\operatorname{\Omega}, \operatorname{\Omega}^{- 1} \in \mathcal{B}(\mathcal{H})\), where \(\mathcal{B}(\mathcal{H})\) denotes the space of bounded operators on \(\mathcal{H}\) to \(\mathcal{H}\).
[3] Adams, R. A., Sobolev Spaces, (1975), Academic Press: Academic Press, New York
[4] Adduci, J.; Mityagin, B., Eigensystem of an L2-perturbed harmonic oscillator is an unconditional basis, Cent. Eur. J. Math., 10, 569-589, (2012) · Zbl 1259.47059
[5] Adduci, J.; Mityagin, B., Root system of a perturbation of a selfadjoint operator with discrete spectrum, Integr. Equations Oper. Theory, 73, 153-175, (2012) · Zbl 1294.47022
[6] Ahmed, Z., Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: Real spectrum of non-Hermitian Hamiltonians, Phys. Lett. A, 294, 287-291, (2002) · Zbl 0990.81029
[7] Albeverio, S.; Guenther, U.; Kuzhel, S., J-self-adjoint operators with \(\mathcal{C}\)-symmetries: Extension theory approach, J. Phys. A: Math. Theor., 42, 105205, (2009) · Zbl 1162.47060
[8] Aleman, A. and Viola, J., “On weak and strong solution operators for evolution equations coming from quadratic operators,” e-print , 2014. · Zbl 06852558
[9] Aleman, A.; Viola, J., Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Notices, 2015, 17, 8275-8288 · Zbl 1339.47056
[10] Almog, Y., The stability of the normal state of superconductors in the presence of electric currents, SIAM J. Math. Anal., 40, 824-850, (2008) · Zbl 1165.82029
[11] Almog, Y.; Helffer, B.; Pan, X.-B., Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field. Part II: The large conductivity limit, SIAM J. Math. Anal., 44, 3671-3733, (2012) · Zbl 1263.82074
[12] Almog, Y.; Helffer, B.; Pan, X.-B., Superconductivity near the normal state in a half-plane under the action of a perpendicular electric currents and an induced magnetic field, Trans. Am. Math. Soc., 365, 1183-1217, (2013) · Zbl 1267.82139
[13] Bagarello, F., Examples of pseudo-bosons in quantum mechanics, Phys. Lett. A, 374, 3823-3827, (2010) · Zbl 1238.81191
[14] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70, 947-1018, (2007)
[15] Bender, C. M.; Boettcher, P. N., Real spectra in non-Hermitian Hamiltonians having \(\mathcal{PT}\) symmetry, Phys. Rev. Lett., 80, 5243-5246, (1998) · Zbl 0947.81018
[16] Bender, C. M.; Brody, D. C.; Jones, H. F., Complex extension of quantum mechanics, Phys. Rev. Lett., 89, 270401, (2002) · Zbl 1267.81234
[17] Blank, J.; Exner, P.; Havlíček, M., Hilbert Space Operators in Quantum Physics, (2008), Springer · Zbl 1163.47060
[18] Montrieux, W. B., “Estimation de résolvante et construction de quasimode près du bord du pseudospectre,” e-print [math.SP] (2013).
[19] Borisov, D.; Krejčiřík, D., \(\mathcal{PT}\)-symmetric waveguides, Integr. Equations Oper. Theory, 62, 489-515, (2008) · Zbl 1178.35141
[20] Borisov, D.; Krejčiřík, D., The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions, Asympt. Anal., 76, 49-59, (2012) · Zbl 1241.47042
[21] Caliceti, E.; Graffi, S.; Hitrik, M.; Sjöstrand, J., Quadratic \(\mathcal{PT}\)-symmetric operators with real spectrum and similarity to self-adjoint operators, J. Phys. A: Math. Theor., 45, 444007, (2012) · Zbl 1263.81190
[22] Davies, E. B., Pseudo-spectra, the harmonic oscillator and complex resonances, Proc. R. Soc. A, 455, 585-599, (1999) · Zbl 0931.70016
[23] Davies, E. B., Semi-classical states for non-self-adjoint Schrödinger operators, Commun. Math. Phys., 200, 35-41, (1999) · Zbl 0921.47060
[24] Davies, E. B., Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc., 32, 432-438, (2000) · Zbl 1043.47502
[25] Davies, E. B., Non-self-adjoint differential operators, Bull. London Math. Soc., 34, 513-532, (2002) · Zbl 1052.47042
[26] Davies, E. B., Linear Operators and their Spectra, (2007), Cambridge University Press · Zbl 1138.47001
[27] Davies, E. B.; Kuijlaars, A. B. J., Spectral asymptotics of the non-self-adjoint harmonic oscillator, J. London Math. Soc., 70, 420-426, (2004) · Zbl 1073.34093
[28] Davies, E. B. and Marletta, M., private communication (2013).
[29] Dencker, N.; Sjöstrand, J.; Zworski, M., Pseudospectra of semiclassical (pseudo-) differential operators, Commun. Pure Appl. Math., 57, 384-415, (2004) · Zbl 1054.35035
[30] Dieudonné, J., “Quasi-Hermitian operators,” Proceedings of the International Symposium on Linear Spaces (Jerusalem Academic Press, Jerusalem; Pergamon, Oxford,1961), pp. 115-123.
[31] Dimassi, M.; Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit, (1999), London Mathematical Society · Zbl 0926.35002
[32] Dorey, P.; Dunning, C.; Tateo, R., Spectral equivalences, Bethe Ansatz equations, and reality properties in \(\mathcal{PT}\)-symmetric quantum mechanics, J. Phys. A: Math. Gen., 34, 5679-5704, (2001) · Zbl 0982.81021
[33] Edmunds, D. E.; Evans, W. D., Spectral Theory and Differential Operators, (1987), Oxford University Press · Zbl 0628.47017
[34] Fisher, M. E., Yang-Lee edge singularity and φ3 field theory, Phys. Rev. Lett., 40, 1610-1613, (1978)
[35] Giordanelli, I.; Graf, G. M., The real spectrum of the imaginary cubic oscillator: An expository proof, Ann. Henri Poincaré, 16, 99-112, (2014) · Zbl 1305.81082
[36] Graefe, E.-M.; Korsch, H. J.; Rush, A.; Schubert, R., Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator, J. Phys. A: Math. Theor., 48, 055301, (2015) · Zbl 1308.81094
[37] Hassi, S.; Kuzhel, S., On J-self-adjoint operators with stable C-symmetry, Proc. R. Soc. Edinburgh: Sect. A Math., 143, 141-167, (2013) · Zbl 1400.47003
[38] Henry, R., Spectral instability for even non-selfadjoint anharmonic oscillators, J. Spectral Theory, 4, 349-364, (2014) · Zbl 1308.34112
[39] Henry, R., Spectral Projections of the Complex Cubic Oscillator, Ann. Henri Poincaré, 15, 2025-2043, (2014) · Zbl 1301.81060
[40] Herbst, I. W., Dilation analyticity in constant electric field. I. The two body problem, Commun. Math. Phys., 64, 3, 279-298, (1979) · Zbl 0447.47028
[41] Hitrik, M.; Sjöstrand, J.; Viola, J., Resolvent estimates for elliptic quadratic differential operators, Anal. & PDE, 6, 181-196, (2013) · Zbl 1295.47045
[42] Hörmander, L., Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., 219, 3, 413-449, (1995) · Zbl 0829.35150
[43] Hörmander, L., The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, (2007), Springer: Springer, Berlin · Zbl 1115.35005
[44] Kato, T., Perturbation Theory for Linear Operators, (1995), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0836.47009
[45] Krejčiřík, D., Calculation of the metric in the Hilbert space of a \(\mathcal{PT}\)-symmetric model via the spectral theorem, J. Phys. A: Math. Theor., 41, 244012, (2008) · Zbl 1142.81008
[46] Krejčiřík, D.; Siegl, P., \(\mathcal{PT}\)-symmetric models in curved manifolds, J. Phys. A: Math. Theor., 43, 485204, (2010) · Zbl 1207.81030
[47] Krejčiřík, D.; Tater, M., Non-Hermitian spectral effects in a \(\mathcal{PT}\)-symmetric waveguide, J. Phys. A: Math. Theor., 41, 244013, (2008) · Zbl 1140.81386
[48] Krejčiřík, D.; Bíla, H.; Znojil, M., Closed formula for the metric in the Hilbert space of a \(\mathcal{PT}\)-symmetric model, J. Phys. A: Math. Gen., 39, 10143-10153, (2006) · Zbl 1117.81058
[49] Krejčiřík, D.; Siegl, P.; Železný, J., On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators, Complex Anal. Oper. Theory, 8, 255-281, (2014) · Zbl 1410.34086
[50] Mityagin, B.; Siegl, P., Root system of singular perturbations of the harmonic oscillator type operators, Lett. Math. Phys., 2015, 1-21 · Zbl 1330.47023
[51] Mityagin, B.; Siegl, P.; Viola, J., Differential operators admitting various rates of spectral projection growth, (2013)
[52] Mostafazadeh, A., Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys., 43, 205-214, (2002) · Zbl 1059.81070
[53] Mostafazadeh, A., Pseudo-Hermiticity versus PT symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., 43, 2814-2816, (2002) · Zbl 1060.81022
[54] Mostafazadeh, A., Pseudo-Hermiticity versus PT symmetry. III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys., 43, 3944-3951, (2002) · Zbl 1061.81075
[55] Mostafazadeh, A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys., 7, 1191-1306, (2010) · Zbl 1208.81095
[56] Pravda-Starov, K., A complete study of the pseudo-spectrum for the rotated harmonic oscillator, J. London Math. Soc., 73, 745-761, (2006) · Zbl 1106.34060
[57] Pravda-Starov, K., Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not., 2007, 31 · Zbl 1135.47048
[58] Pravda-Starov, K., On the pseudospectrum of elliptic quadratic differential operators, Duke Math. J., 145, 249-279, (2008) · Zbl 1157.35129
[59] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., Integrals and Series. Special Functions, 2, (1986), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers, Amsterdam · Zbl 0733.00004
[60] Reddy, S. C.; Trefethen, L. N., Pseudospectra of the convection-diffusion operator, SIAM J. Appl. Math., 54, 1634-1649, (1994) · Zbl 0811.35026
[61] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis, (1972), Academic Press: Academic Press, New York
[62] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators, (1978), Academic Press: Academic Press, New York · Zbl 0401.47001
[63] Reichel, L.; Trefethen, L. N., Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl., 162-164, 153-185, (1992) · Zbl 0748.15010
[64] Roch, S.; Silbermann, B., C∗-algebra techniques in numerical analysis, J. Oper. Theory, 35, 241-280, (1996) · Zbl 0865.65035
[65] Schechter, M., Operator Methods in Quantum Mechanics, (1981), Elsevier · Zbl 0456.47012
[66] Scholtz, F. G.; Geyer, H. B.; Hahne, F. J. W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Phys., 213, 74-101, (1992) · Zbl 0749.47041
[67] Shargorodsky, E., On the definition of pseudospectra, Bull. London Math. Soc., 41, 524-534, (2009) · Zbl 1207.47005
[68] Shargorodsky, E., Pseudospectra of semigroup generators, Bull. London Math. Soc., 42, 1031-1034, (2010) · Zbl 1218.47010
[69] Shin, K. C., On the reality of the eigenvalues for a class of \(\mathcal{PT}\)-symmetric oscillators, Commun. Math. Phys., 229, 543-564, (2002) · Zbl 1017.34083
[70] Siegl, P., \(\mathcal{PT}\)-symmetric square well-perturbations and the existence of metric operator, Int. J. Theor. Phys., 50, 991-996, (2011) · Zbl 1216.81068
[71] Siegl, P.; Krejčiřík, D., On the metric operator for the imaginary cubic oscillator, Phys. Rev. D, 86, 121702(R), (2012)
[72] Simon, B., The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys., 97, 279-288, (1976) · Zbl 0325.35029
[73] Sjöstrand, J., Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., 12, 85-130, (1974) · Zbl 0317.35076
[74] Sjöstrand, J., Singularités analytiques microlocales, Astérisque, 95, Volume 95 of Astérisque, 1-166, (1982), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 0524.35007
[75] Swanson, M. S., Transition elements for a non-Hermitian quadratic Hamiltonian, J. Math. Phys., 45, 585-601, (2004) · Zbl 1070.81053
[76] Szegö, G., Orthogonal Polynomials, (1959), American Mathematical Society: American Mathematical Society, Providence, RI · JFM 65.0278.03
[77] Trefethen, L. N.; Embree, M., Spectra and Pseudospectra, (2005), Princeton University Press · Zbl 1085.15009
[78] Trefethen, L. N.et al., Chebfun Version 4.2. The Chebfun Development Team, 2011, .
[79] Viola, J., Spectral projections and resolvent bounds for partially elliptic quadratic differential operators, J. Pseudo-Differential Oper. Appl., 4, 145-221, (2013) · Zbl 1285.47049
[80] Znojil, M., \(\mathcal{PT}\)-symmetric square well, Phys. Lett. A, 285, 7-10, (2001) · Zbl 0969.81521
[81] Zworski, M., A remark on a paper of E. B. Davies, Proc. Am. Math. Soc., 129, 2955-2957, (2001) · Zbl 0981.35107
[82] Zworski, M., Semiclassical analysis, Graduate Studies in Mathematics, 138, (2012), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.