×

zbMATH — the first resource for mathematics

Fixed-order stabilising controller design by a mixed randomised/deterministic method. (English) Zbl 1328.93228
Summary: A novel mixed randomised/deterministic method for fixed-order controller design is proposed for discrete-time single-input single-output plants. It is based on the random generation of Schur stable polynomials using reflection coefficients and reflection segments of polynomials. Stable reflection segments are then projected onto the affine set of closed-loop characteristic polynomials and the stable line segments in the controller parameter space are determined. A novel approach is proposed for global and local optimisation over reflection segment bunches on the basis of the weighted sum of absolute values of reflection coefficients.

MSC:
93D21 Adaptive or robust stabilization
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Åström K.J., Advanced PID control (2006)
[2] DOI: 10.1016/B978-0-08-042230-5.50016-5
[3] Diaz-Barrero J.L., Applied Mathemathics E-Notes 4 pp 114– (2004)
[4] DOI: 10.1109/TAC.1978.1101744 · Zbl 0377.93021
[5] DOI: 10.1016/S0167-6911(97)00014-5 · Zbl 0901.93023
[6] DOI: 10.1109/TAC.2008.929397 · Zbl 1367.93228
[7] DOI: 10.1109/TAC.2003.814103 · Zbl 1364.93707
[8] DOI: 10.1016/j.isatra.2008.05.001
[9] DOI: 10.1016/j.automatica.2007.01.022 · Zbl 1130.93339
[10] Kay S.M, Modern spectral estimation. Englewood Cliffs (1988) · Zbl 0658.62108
[11] DOI: 10.1016/S0005-1098(99)00080-1 · Zbl 0945.93600
[12] Levinson N, Journal of Mathematical Physics 25 pp 261– (1947)
[13] DOI: 10.1109/TAC.2005.854614 · Zbl 1365.93352
[14] DOI: 10.1016/j.automatica.2006.03.007 · Zbl 1122.93033
[15] DOI: 10.1016/S0947-3580(11)70579-9 · Zbl 1227.65007
[16] Oppenheim A.M., Discrete-time signal processing (1989) · Zbl 0676.42001
[17] DOI: 10.1134/S0005117908110076 · Zbl 1163.93399
[18] DOI: 10.1016/j.automatica.2005.08.010 · Zbl 1121.93028
[19] Polyak B.T., Robust stability and control (in Russian) (2002)
[20] DOI: 10.1007/s10513-005-0115-0 · Zbl 1095.93011
[21] DOI: 10.3166/ejc.17.145-159 · Zbl 1227.65008
[22] DOI: 10.1016/S0005-1098(01)00089-9 · Zbl 1031.93165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.