Saito, Shingo; Wakabayashi, Noriko Sum formula for finite multiple zeta values. (English) Zbl 1329.11093 J. Math. Soc. Japan 67, No. 3, 1069-1076 (2015). M. Kaneko [“Finite multiple zeta values \(\mod p\) and relations among multiple zeta values”, Sūrikaisekikenkyūsho Kōkyūroku 1813, 27–31 (2010)] conjectured that \[ \sum_{k_1+\cdots+ k_n=k,\,k_1\geq 2}\zeta_{\mathcal A}(k_1,\dots,k_n)=\left(1+(-1)^n\binom{k-1}{n-1}\right)\frac{B_{p-k}}{k}, \] and \[ \sum_{k_1+\cdots+ k_n=k,\,k_1\geq 2}\zeta_{\mathcal A}^{\star}(k_1,\dots,k_n)=\left((-1)^n+\binom{k-1}{n-1}\right)\frac{B_{p-k}}{k}, \] where \(\zeta_{\mathcal A}\) and \(\zeta_{\mathcal A}^{\star}\) are finite multiple zeta(-star) values.In this paper, the authors prove these conjectures and extend the results for a wider class of summation domain. These are the finite versions of the corresponding well-known summation formulas of MZV theory. Reviewer: István Mező (Debrecen) Cited in 2 ReviewsCited in 12 Documents MSC: 11M32 Multiple Dirichlet series and zeta functions and multizeta values Keywords:finite multiple zeta value; sum formula PDF BibTeX XML Cite \textit{S. Saito} and \textit{N. Wakabayashi}, J. Math. Soc. Japan 67, No. 3, 1069--1076 (2015; Zbl 1329.11093) Full Text: DOI arXiv Euclid References: [1] A. Granville, A decomposition of Riemann’s zeta-function, Analytic number theory, Kyoto, 1996, London Math. Soc. Lecture Note Ser., 247 , Cambridge Univ. Press, Cambridge, 1997, pp.,95-101. · Zbl 0907.11024 [2] M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275-290. · Zbl 0763.11037 [3] M. E. Hoffman, Quasi-symmetric functions and mod \(p\) multiple harmonic sums, Kyushu J. Math., · Zbl 1382.11066 [4] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra, 194 (1997), 477-495. · Zbl 0881.11067 [5] M. Kaneko, Finite multiple zeta values mod \(p\) and relations among multiple zeta values, Sūrikaisekikenkyūsho Kōkyūroku, 2012, 1813 , pp.,27-31, Aspects of multiple zeta values (Japanese), Kyoto, 2010. [6] M. Kaneko and D. Zagier, Finite multiple zeta values, in preparation. [7] S. Saito and N. Wakabayashi, Bowman-Bradley type theorem for finite multiple zeta values, Tohoku Math. J. (2), · Zbl 1412.11107 [8] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73-106. · Zbl 1218.11005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.