×

A family of density expansions for Lévy-type processes. (English) Zbl 1329.60122

The authors consider scalar Lévy-type processes with sufficiently smooth coefficients which include local volatility models with or without jumps of various kinds extensively investigated in the past. In particular, earlier results and methods of S. Pagliarani et al. [SIAM J. Financ. Math. 4, 265–296 (2013; Zbl 1285.60084)] that were obtained for state-independent Lévy measures and no-default situations are extended and generalized here to include state-dependent Lévy measures and the local default intensity case. No small diffusion or small jump size/intensity assumptions as in [E. Benhamou et al., Finance Stoch. 13, No. 4, 563–589 (2009; Zbl 1195.91153)] are made in this paper.
The authors derive a family of asymptotic expansions (with respect to an arbitrary basis) for the transition densities of Lévy-type processes as well as European-style derivative prices and defaultable bond prices. Pseudo-differential calculus techniques are used to provide explicit formulae for the Fourier transform of every term in the transition density and option pricing expansions. For models with Gaussian-type jumps, respective inverse Fourier transforms are explicitly computed, and pointwise error estimates for the transition densities are provided. Numerical examples that illustrate the versatility and effectiveness of the methods include CEV-like processes and processes with Gaussian or Variance-Gamma Lévy measure.

MSC:

60G51 Processes with independent increments; Lévy processes
35S05 Pseudodifferential operators as generalizations of partial differential operators
35R09 Integro-partial differential equations
91G20 Derivative securities (option pricing, hedging, etc.)
91G80 Financial applications of other theories

Software:

Mathematica

References:

[1] Andersen, L. and Andreasen, J. (2000). Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research 4 231-262. · Zbl 1274.91398 · doi:10.1023/A:1011354913068
[2] Benhamou, E., Gobet, E. and Miri, M. (2009). Smart expansion and fast calibration for jump diffusions. Finance Stoch. 13 563-589. · Zbl 1195.91153 · doi:10.1007/s00780-009-0102-3
[3] Bielecki, T. R. and Rutkowski, M. (2002). Credit Risk : Modelling , Valuation and Hedging . Springer, Berlin. · Zbl 0979.91050
[4] Boyarchenko, S. I. and Levendorskiĭ, S. Z. (2002). Non-Gaussian Merton-Black-Scholes Theory. Advanced Series on Statistical Science & Applied Probability 9 . World Scientific, River Edge, NJ. · Zbl 0997.91031
[5] Capponi, A., Pagliarani, S. and Vargiolu, T. (2014). Pricing vulnerable claims in a Lévy driven model. Finance Stoch. 18 755-789. · Zbl 1326.60095 · doi:10.1007/s00780-014-0239-6
[6] Carr, P. and Linetsky, V. (2006). A jump to default extended CEV model: An application of Bessel processes. Finance Stoch. 10 303-330. · Zbl 1101.60057 · doi:10.1007/s00780-006-0012-6
[7] Carr, P. and Madan, D. B. (2010). Local volatility enhanced by a jump to default. SIAM J. Financial Math. 1 2-15. · Zbl 1197.91183 · doi:10.1137/090750731
[8] Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure of asset returns: An empirical investigation. The Journal of Business 75 305-333.
[9] Christoffersen, P., Jacobs, K. and Ornthanalai, C. (2009). Exploring Time-Varying Jump Intensities : Evidence from S&P 500 Returns and Options . CIRANO, Montreal.
[10] Cox, J. (1975). Notes on option pricing I: Constant elasticity of diffusions. Unpublished draft, Stanford Univ. A revised version of the paper was published by the Journal of Portfolio Management in 1996.
[11] Di Francesco, M. and Pascucci, A. (2005). On a class of degenerate parabolic equations of Kolmogorov type. Appl. Math. Res. Express AMRX 3 77-116. · Zbl 1085.35086 · doi:10.1155/AMRX.2005.1
[12] Dupire, B. (1994). Pricing with a smile. Risk 7 18-20.
[13] Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. The Journal of Finance 59 1367-1404.
[14] Estes, R. H. and Lancaster, E. R. (1972). Some generalized power series inversions. SIAM J. Numer. Anal. 9 241-247. · Zbl 0239.65021 · doi:10.1137/0709023
[15] Friedman, A. (1964). Partial Differential Equations of Parabolic Type . Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0144.34903
[16] Garroni, M. G. and Menaldi, J.-L. (1992). Green Functions for Second Order Parabolic Integro-Differential Problems. Pitman Research Notes in Mathematics Series 275 . Longman Scientific & Technical, Harlow; copublished in the United States with Wiley, New York. · Zbl 0806.45007
[17] Hagan, P. and Woodward, D. (1999). Equivalent Black volatilities. Appl. Math. Finance 6 147-157. · Zbl 1009.91033 · doi:10.1080/135048699334500
[18] Hoh, W. (1998). Pseudo differential operators generating Markov processes. Habilitations-schrift, Universität Bielefeld, Bielefeld.
[19] Jacquier, A. and Lorig, M. (2013). The smile of certain Lévy-type models. SIAM J. Financial Math. 4 804-830. · Zbl 1282.91332 · doi:10.1137/12090246X
[20] Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets. Springer Finance . Springer, London. · Zbl 1205.91003 · doi:10.1007/978-1-84628-737-4
[21] Levi, E. E. (1907). Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ. Mat. Palermo (2) 24 275-317. · JFM 38.0402.01
[22] Linetsky, V. (2006). Pricing equity derivatives subject to bankruptcy. Math. Finance 16 255-282. · Zbl 1145.91351 · doi:10.1111/j.1467-9965.2006.00271.x
[23] Linetsky, V. (2007). Spectral methods in derivatives pricing, Chapter 6. In Financial Engineering (J. R. Birge and V. Linetsky, eds.). Handbooks in Operations Research and Management Science 15 223-299. Elsevier, Amsterdam.
[24] López, J. L. and Temme, N. M. (2002). Two-point Taylor expansions of analytic functions. Stud. Appl. Math. 109 297-311. · Zbl 1141.30300 · doi:10.1111/1467-9590.00225
[25] Lorig, M., Pagliarani, S. and Pascucci, A. (2013). Pricing approximations and error estimates for local Lévy-type models with default. Preprint. Available at . arXiv:1304.1849 · Zbl 1293.91142 · doi:10.1142/S0219024913500507
[26] Madan, D., Carr, P. and Chang, E. (1998). The variance gamma process and option pricing. European Finance Review 2 79-105. · Zbl 0937.91052 · doi:10.1023/A:1009703431535
[27] Mendoza-Arriaga, R., Carr, P. and Linetsky, V. (2010). Time-changed Markov processes in unified credit-equity modeling. Math. Finance 20 527-569. · Zbl 1232.91692 · doi:10.1111/j.1467-9965.2010.00411.x
[28] Oksendal, B. and Sulem, A. (2005). Applied Stochastic Control of Jump Diffusions . Springer, Berlin.
[29] Pagliarani, S. and Pascucci, A. (2012). Analytical approximation of the transition density in a local volatility model. Cent. Eur. J. Math. 10 250-270. · Zbl 1246.91137 · doi:10.2478/s11533-011-0115-y
[30] Pagliarani, S., Pascucci, A. and Riga, C. (2013). Adjoint expansions in local Lévy models. SIAM J. Financial Math. 4 265-296. · Zbl 1285.60084 · doi:10.1137/110858732
[31] Pascucci, A. (2011). PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series 2 . Springer, Milan. · Zbl 1214.91002 · doi:10.1007/978-88-470-1781-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.