×

Interpolation methods for stochastic processes spaces. (English) Zbl 1329.60161

Summary: The scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously monotonous processes is entered. Conditions and statements of interpolation theorems concern the fixed stochastic process, which differs from the classical results.

MSC:

60G99 Stochastic processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Burkholder, D. L.; Gundy, R. F., Extrapolation and interpolation of quasi-linear operators on martingales, Acta Mathematica, 124, 249-304 (1970) · Zbl 0223.60021
[2] Chao, J.-A.; Long, R.-L., Martingale transforms with unbounded multipliers, Proceedings of the American Mathematical Society, 114, 3, 831-838 (1992) · Zbl 0746.60050
[3] Chao, J.-A.; Long, R.-L., Martingale transforms with unbounded multipliers, Transactions of the American Mathematical Society, 193, 3, 199-215 (1974) · Zbl 0746.60050
[4] Weisz, F., Hardy spaces of predictable martingales, Analysis Mathematica, 20, 3, 225-233 (1994) · Zbl 0814.60038
[5] Weisz, F., Weak martingale Hardy spaces, Probability and Mathematical Statistics, 18, 1, 133-148 · Zbl 0985.60041
[6] Nursultanov, E. D., Network spaces and inequalities of Hardy-Littlewood type, Matematicheskiĭ Sbornik, 189, 3, 83-102 · Zbl 0922.46027
[7] Nursultanov, E. D., Interpolation properties of some anisotropic spaces and Hardy-Littlewood type inequalities, East Journal on Approximations, 4, 2, 243-275 (1998) · Zbl 0922.46023
[8] Nursultanov, E. D.; Tikhonov, S., Net spaces and boundedness of integral operators, Journal of Geometric Analysis, 21, 4, 950-981 (2011) · Zbl 1248.46025
[9] Shiryaev, A. N., Probability, Moscow, Russia: Nauka, Moscow, Russia
[10] Aubakirov, T. U.; Nursultanov, E. D., Spaces of stochastic processes, and interpolation theorems, Uspekhi Matematicheskikh Nauk, 61, 6, 181-182 · Zbl 1157.46013
[11] Doob, J. L., Stochastic Processes. Stochastic Processes, Wiley Classics Library (1990), New York, NY, USA: John Wiley & Sons Inc., New York, NY, USA · Zbl 0696.60003
[12] Bergh, J.; Löfström, J., Interpolation Spaces: An Introduction. Interpolation Spaces: An Introduction, Grundlehren der Mathematischen Wissenschaften, 223 (1976), Berlin, Germany: Springer, Berlin, Germany · Zbl 0344.46071
[13] Aubakirov, T. U.; Nursultanov, E. D., Interpolation theorem for stochastic processes, Eurasian Mathematical Journal, 1, 1, 8-16 (2010) · Zbl 1225.60086
[14] Kashin, B. S.; Saakyan, A. A., Orthogonal Series (1984), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0632.42017
[15] Leopold, H.-G., On function spaces of variable order of differentiation, Forum Mathematicum, 3, 1, 1-21 (1991) · Zbl 0737.46020
[16] Cobos, F.; Fernandez, D. L., Hardy-Sobolev spaces and Besov spaces with a function parameter, Function Spaces and Applications. Function Spaces and Applications, Lecture Notes in Mathematics, 1302, 158-170 (1988), Berlin, Germany: Springer, Berlin, Germany
[17] Besov, O. V., Interpolation and embeddings of the spaces of generalized functions spaces \(B_{p, q}^s\) and \(F_{p, q}^s\) on a domain, Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 219, 80-102
[18] Besov, O. V., On spaces of functions of variable smoothness defined by pseudodifferential operators, Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 227, 56-74 · Zbl 0978.46018
[19] Besov, O. V., Equivalent normings of spaces of functions of variable smoothness, Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 243, 87-95 · Zbl 1084.46023
[20] Besov, O. V., On the interpolation, embedding, and extension of spaces of functions of variable smoothness, Doklady Akademii Nauk, 401, 1, 7-11 (2005) · Zbl 1272.46016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.