Wu, Zheng; Huang, Hao; Wang, Lianglong Stochastic delay population dynamics under regime switching: permanence and asymptotic estimation. (English) Zbl 1329.60201 Abstr. Appl. Anal. 2013, Article ID 129072, 11 p. (2013). Summary: This paper is concerned with a delay Lotka-Volterra model under regime switching diffusion in random environment. Permanence and asymptotic estimations of solutions are investigated by virtue of the \(V\)-function technique, the \(M\)-matrix method, and Chebyshev’s inequality. Finally, an example is given to illustrate the main results. Cited in 3 Documents MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60K37 Processes in random environments 60J60 Diffusion processes 92D25 Population dynamics (general) Keywords:stochastic delay population dynamics; regime switching diffusion; random environment × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ahmad, S.; Rao, M. R. M., Asymptotically periodic solutions of \(n\)-competing species problem with time delays, Journal of Mathematical Analysis and Applications, 186, 2, 559-571 (1994) · Zbl 0818.45004 · doi:10.1006/jmaa.1994.1317 [2] Bereketoglu, H.; Győri, I., Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay, Journal of Mathematical Analysis and Applications, 210, 1, 279-291 (1997) · Zbl 0880.34072 · doi:10.1006/jmaa.1997.5403 [3] Freedman, H. I.; Ruan, S. G., Uniform persistence in functional-differential equations, Journal of Differential Equations, 115, 1, 173-192 (1995) · Zbl 0814.34064 · doi:10.1006/jdeq.1995.1011 [4] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0752.34039 [5] Kolmanovskiĭ, V.; Myshkis, A., Applied Theory of Functional-Differential Equations (1992), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0917.34001 [6] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0777.34002 [7] Bahar, A.; Mao, X., Stochastic delay population dynamics, International Journal of Pure and Applied Mathematics, 11, 4, 377-400 (2004) · Zbl 1043.92028 [8] Mao, X.; Sabanis, S.; Renshaw, E., Asymptotic behaviour of the stochastic Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 287, 1, 141-156 (2003) · Zbl 1048.92027 · doi:10.1016/S0022-247X(03)00539-0 [9] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes and their Applications, 97, 1, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0 [10] Jiang, D.; Shi, N., A note on nonautonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, 303, 1, 164-172 (2005) · Zbl 1076.34062 · doi:10.1016/j.jmaa.2004.08.027 [11] Jiang, D.; Shi, N.; Li, X., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, 340, 1, 588-597 (2008) · Zbl 1140.60032 · doi:10.1016/j.jmaa.2007.08.014 [12] Gard, T. C., Introduction to Stochastic Dierential Equations (1998), Marcel Dekker [13] Bahar, A.; Mao, X., Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292, 2, 364-380 (2004) · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004 [14] Mao, X., Delay population dynamics and environmental noise, Stochastics and Dynamics, 5, 2, 149-162 (2005) · Zbl 1093.60033 · doi:10.1142/S021949370500133X [15] Pang, S.; Deng, F.; Mao, X., Asymptotic properties of stochastic population dynamics, Dynamics of Continuous, Discrete & Impulsive Systems A, 15, 5, 603-620 (2008) · Zbl 1171.34038 [16] Huang, H.; Wu, Z.; Wang, L., \( \psi^\gamma\) stability analysis for neutral stochastic neural networks with multiple delays based on LMI approach · Zbl 1324.92002 [17] Wu, Z.; Huang, H.; Wang, L., Dynamical behavior of a stochastic ratio-dependent predator-prey system, Journal of Applied Mathematics, 2012 (2012) · Zbl 1253.37087 · doi:10.1155/2012/857134 [18] Wu, Z.; Huang, H.; Wang, L., Exponential stability of impulsive stochastic functional differential systems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.93109 · doi:10.1155/2012/678536 [19] Wu, Z.; Huang, H.; Wang, L., Stochastic delay logistic model with markovian switching, International Journal of Information and Systems Science, 8, 2, 174-180 (2012) · Zbl 1343.34177 [20] Wu, Z.; Huang, H.; Wang, L., Stochastic delay logistic model under regime switching, Abstract and Applied Analysis, 2012 (2012) · Zbl 1251.34099 [21] Takeuchi, Y.; Du, N. H.; Hieu, N. T.; Sato, K., Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, Journal of Mathematical Analysis and Applications, 323, 2, 938-957 (2006) · Zbl 1113.34042 · doi:10.1016/j.jmaa.2005.11.009 [22] Luo, Q.; Mao, X., Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334, 1, 69-84 (2007) · Zbl 1113.92052 · doi:10.1016/j.jmaa.2006.12.032 [23] Li, X.; Jiang, D.; Mao, X., Population dynamical behavior of Lotka-Volterra system under regime switching, Journal of Computational and Applied Mathematics, 232, 2, 427-448 (2009) · Zbl 1173.60020 · doi:10.1016/j.cam.2009.06.021 [24] Li, X.; Gray, A.; Jiang, D.; Mao, X., Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, Journal of Mathematical Analysis and Applications, 376, 1, 11-28 (2011) · Zbl 1205.92058 · doi:10.1016/j.jmaa.2010.10.053 [25] Zhu, C.; Yin, G., On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Analysis. Theory, Methods & Applications A, 71, 12, e1370-e1379 (2009) · Zbl 1238.34059 · doi:10.1016/j.na.2009.01.166 [26] Liu, M.; Wang, K., Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment, Journal of Theoretical Biology, 264, 3, 934-944 (2010) · Zbl 1406.92673 · doi:10.1016/j.jtbi.2010.03.008 [27] Liu, M.; Wang, K., Asymptotic properties and simulations of a stochastic logistic model under regime switching, Mathematical and Computer Modelling, 54, 9-10, 2139-2154 (2011) · Zbl 1235.60099 · doi:10.1016/j.mcm.2011.05.023 [28] Wu, Z.; Huang, H.; Wang, L., Stochastic delay population Dynamics under regime switching: global solutions and extinction, Abstract and Applied Analysis, 2013 (2013) · Zbl 1271.92040 [29] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian Switching (2006), London, UK: Imperial College Press, London, UK · Zbl 1126.60002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.