×

zbMATH — the first resource for mathematics

The containment condition and AdapFail algorithms. (English) Zbl 1329.60263
Summary: This short note investigates convergence of adaptive Markov chain Monte Carlo algorithms, i.e. algorithms which modify the Markov chain update probabilities on the fly. We focus on the containment condition introduced by Roberts and Rosenthal in 2007. We show that if the containment condition is not satisfied, then the algorithm will perform very poorly. Specifically, with positive probability, the adaptive algorithm will be asymptotically less efficient then any nonadaptive ergodic MCMC algorithm. We call such algorithms AdapFail, and conclude that they should not be used.

MSC:
60J22 Computational methods in Markov chains
60J05 Discrete-time Markov processes on general state spaces
65C05 Monte Carlo methods
65C40 Numerical analysis or methods applied to Markov chains
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statist. Comput. 18, 343-373.
[2] Atchadé, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815-828. · Zbl 1085.62097
[3] Bai, Y., Roberts, G. O. and Rosenthal, J. S. (2011). On the containment condition for adaptive Markov chain Monte Carlo algorithms. Adv. Appl. Statist. 21, 1-54. · Zbl 1225.60130
[4] Fort, G., Moulines, E. and Priouret, P. (2011). Convergence of adaptive and interacting Markov chain Monte Carlo algorithms. Ann. Statist. 39, 3262-3289. · Zbl 1246.65003
[5] Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7, 473-483.
[6] Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93, 1045-1054. · Zbl 1064.65503
[7] Giordani, P. and Kohn, R. (2008). Efficient Bayesian inference for multiple change-point and mixture innovation models. J. Business Econom. Statist. 26, 66-77.
[8] Griffin, J. E., Łatuszyński, K. and Steel, M. F. J. (2014). Individual adaptation: an adaptive MCMC scheme for variable selection problems. Submitted.
[9] Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7, 223-242. · Zbl 0989.65004
[10] Łatuszyński, K. (2012). A path stability condition for adaptive MCMC. In preparation.
[11] Łatuszyński, K., Roberts, G. O. and Rosenthal, J. S. (2013). Adaptive Gibbs samplers and related MCMC methods. Ann. Appl. Prob. 23, 66-98. · Zbl 1263.60067
[12] Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability , 2nd edn. Cambridge University Press. · Zbl 0925.60001
[13] Mira, A. and Geyer, C. J. (1999). Ordering Monte Carlo Markov chains. Tech. Rep. No. 632, School of Statistics, U. of Minnesota, April 1999. Available at: http://eco.uninsubria.it/webdocenti/amira/papers.html Richardson, S., Bottolo, L. and Rosenthal, J. S. (2011). Bayesian models for sparse regression analysis of high dimensional data. In Bayesian Statistics 9, Oxford University Press, pp. 539-568.
[14] Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Prob. 2, 13-25. · Zbl 0890.60061
[15] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16, 351-367. · Zbl 1127.65305
[16] Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 20-71. · Zbl 1189.60131
[17] Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. 44, 458-475. · Zbl 1137.62015
[18] Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graphical Statist. 18, 349-367.
[19] Roberts, G. O. and Rosenthal, J. S. (2013). A note on formal constructions of sequential conditional couplings. Statist. Prob. Lett. 83, 2073-2076. · Zbl 1285.60077
[20] Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7, 110-120. · Zbl 0876.60015
[21] Solonen, A. et al . (2012). Efficient MCMC for climate model parameter estimation: parallel adaptive chains and early rejection. Bayesian Anal. 7, 715-736. · Zbl 1330.60091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.