×

A difference based approach to the semiparametric partial linear model. (English) Zbl 1329.62179

Summary: A commonly used semiparametric partial linear model is considered. We propose analyzing this model using a difference based approach. The procedure estimates the linear component based on the differences of the observations and then estimates the nonparametric component by either a kernel or a wavelet thresholding method using the residuals of the linear fit. It is shown that both the estimator of the linear component and the estimator of the nonparametric component asymptotically perform as well as if the other component were known. The estimator of the linear component is asymptotically efficient and the estimator of the nonparametric component is asymptotically rate optimal. A test for linear combinations of the regression coefficients of the linear component is also developed. Both the estimation and the testing procedures are easily implementable. Numerical performance of the procedure is studied using both simulated and real data. In particular, we demonstrate our method in an analysis of an attitude data set.

MSC:

62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
62P15 Applications of statistics to psychology
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Bickel, P. J., Klassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993)., Efficient and Adaptive Estimation for Semiparametric Models . The John Hopkins University Press, Baltimore. · Zbl 0786.62001
[2] Brown, L.D. and Low M.G. (1996). A Constrained Risk Inequality with Applications to Nonparametric Functional Estimations., Ann. Statist. 24 , 2524-2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166
[3] Cai, T. and Brown, L.D. (1998). Wavelet shrinkage for nonequispaced samples., Ann. Statist. 26 , 1783-1799. · Zbl 0929.62047 · doi:10.1214/aos/1024691357
[4] Cai, T., Levine, M. and Wang, L. (2009). Variance function estimation in multivariate nonparametric regression., Journal of Multivariate Analysis, 100 , 126-136. · Zbl 1151.62029 · doi:10.1016/j.jmva.2008.03.007
[5] Cai, T. and Wang, L. (2008). Adaptive variance function estimation in heteroscedastic nonparametric regression., Ann. Statist. 36 , 2025-C2054. · Zbl 1148.62021 · doi:10.1214/07-AOS509
[6] Carroll, R. J., Fan, J., Gijbels,I. and Wand, M. P. (1997). Generalized partially linear single-index models., J. Amer. Statist. Assoc. 92 , 477-489. · Zbl 0890.62053 · doi:10.2307/2965697
[7] Chang, X. and Qu, L. (2004). Wavelet estimation of partially linear models., Comput. Statist. Data Anal. 47 , 31-48. · Zbl 1429.62122
[8] Chatterjee, S. and Price, B. (1977)., Regression Analysis by Example. New York: Wiley. · Zbl 0900.62356
[9] Chen, H. and Shiau, J. H. (1991). A two-stage spline smoothing method for partially linear models., J. Statist. Plann. Inference 27 , 187-201. · Zbl 0741.62039 · doi:10.1016/0378-3758(91)90015-7
[10] Cuzick, J. (1992). Semiparametric additive regression., J. Roy. Statist. Soc. Ser. B 54 , 831-843. · Zbl 0776.62036
[11] Daubechies, I. (1992)., Ten Lectures on Wavelets . SIAM, Philadelphia. · Zbl 0776.42018
[12] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation via wavelet shrinkage., Biometrika 81 , 425-55. · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[13] Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Nonparametric estimates of the relation between weather and electricity sales., J. Amer. Statist. Assoc. 81 , 310-320.
[14] Fan, J. and Huang, L. (2001). Goodness-of-Fit Tests for Parametric Regression Models., J. Amer. Statist. Assoc. 96 , 640-652. · Zbl 1017.62014 · doi:10.1198/016214501753168316
[15] Fan, J. and Zhang, J. (2004). Sieve empirical likelihood ratio tests for nonparametric functions., Ann. Statist. 32 , 1858-1907. · Zbl 1056.62057 · doi:10.1214/009053604000000210
[16] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon., Ann. Statist. 29 , 153-193. · Zbl 1029.62042 · doi:10.1214/aos/996986505
[17] Gannaz, I. (2007). Robust estimation and wavelet thresholding in partially linear models., Statist. Comput. 17 , 293-310. · doi:10.1007/s11222-007-9019-x
[18] Hall, P., Kay, J. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression., Biometrika 77 , 521-528. · Zbl 1377.62102 · doi:10.1093/biomet/77.3.521
[19] Hamilton, S. and Truong, Y. (1997). Local linear estimation in partly linear models., J. Multivariate Anal. 60 , 1-C19. · Zbl 0883.62041 · doi:10.1006/jmva.1996.1642
[20] Härdle, W. (1991)., Smoothing Techniques . Berlin: Springer-Verlag. · Zbl 0716.62040
[21] Horowitz, J. and Spokoiny, V. (2001). An adaptive rate-optimal test of a parametric mean-regression model against a nonparametric alternative., Econometrica 69 , 599-631. · Zbl 1017.62012 · doi:10.1111/1468-0262.00207
[22] Lam, C. and Fan, J. (2007). Profile-Kernel Likelihood Inference With Diverging Number of Parameters., Ann. Statist. , · Zbl 1274.62289 · doi:10.1214/07-AOS544
[23] Müller, M. (2001). Estimation and testing in generalized partial linear models - A comparative study., J. Statist. Comput. 11 , 299-309. · doi:10.1023/A:1011981314532
[24] Munk, A., Bissantz, N., Wagner, T. and Freitag, G. (2005). On difference based variance estimation in nonparametric regression when the covariate is high dimensional., J. Roy. Statist. Soc. B 67 , 19-41. · Zbl 1060.62047 · doi:10.1111/j.1467-9868.2005.00486.x
[25] Rice, J. A. (1984). Bandwidth choice for nonparametric regression., Ann. Statist. 12 , 1215-1230. · Zbl 0554.62035 · doi:10.1214/aos/1176346788
[26] Ritov, Y. and Bickel, P. J. (1990). Achieving information bounds in semi and non parametric models., Ann. Statist. 18 , 925-938. · Zbl 0722.62025 · doi:10.1214/aos/1176347633
[27] Robinson, P. M. (1988). Root-N consistent semiparametric regression., Econometrica. 56 , 931-954. · Zbl 0647.62100 · doi:10.2307/1912705
[28] Scott, D. W. (1992)., Multivariate Density Estimation. New York: Wiley.
[29] Severini, T. A. and Wong, W. H. (1992). Generalized profile likelihood and conditional parametric models., Ann. Statist. 20 , 1768-1802. · Zbl 0768.62015 · doi:10.1214/aos/1176348889
[30] Speckman, P. (1988). Kernel smoothing in partial linear models., Jour. Roy. Statist. Soc.Ser. B 50 , 413-436. · Zbl 0671.62045
[31] Schimek, M. (2000). Estimation and inference in partially linear models with smoothing splines., J. Statist. Plann. Inference 91 , 525-C540. · Zbl 1091.62511 · doi:10.1016/S0378-3758(00)00197-X
[32] Strang, G. (1989). Wavelet and dilation equations: A brief introduction., SIAM Rev. 31 , 614-627. · Zbl 0683.42030 · doi:10.1137/1031128
[33] Wahba, G. (1984). Cross validated spline methods for the estimation of multivariate functions from data on functionals., Statistics: An Appraisal. Proceedings 50th Anniversary Conference Iowa State Statistical Laboratory (H. A. David, ed.). Iowa State Univ. Press. · Zbl 0593.65013
[34] Yatchew, A. (1997). An elementary estimator of the partial linear model., Economics Letters 57 , 135-143. · Zbl 0896.90052 · doi:10.1016/S0165-1765(97)00218-8
[35] Yatchew, A. (2003)., Semiparametric regression for the applied econometrician. New York: Cambridge University press. · Zbl 1067.62041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.