Withers, Christopher; Nadarajah, Saralees The bias and skewness of \(M\)-estimators in regression. (English) Zbl 1329.62206 Electron. J. Stat. 4, 1-14 (2010). Summary: We consider \(M\) estimation of a regression model with a nuisance parameter and a vector of other parameters. The unknown distribution of the residuals is not assumed to be normal or symmetric. Simple and easily estimated formulas are given for the dominant terms of the bias and skewness of the parameter estimates. For the linear model these are proportional to the skewness of the ‘independent’ variables. For a nonlinear model, its linear component plays the role of these independent variables, and a second term must be added proportional to the covariance of its linear and quadratic components. For the least squares estimate with normal errors this term was derived by M. J. Box [J. R. Stat. Soc., Ser. B 33, 171–201 (1971; Zbl 0232.62029)]. We also consider the effect of a large number of parameters, and the case of random independent variables. Cited in 6 Documents MSC: 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference Keywords:bias reduction; \(M\)-estimates; nonlinear regression; robust; skewness Citations:Zbl 0232.62029 Software:robustbase × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Box, M. J. (1971). Bias in non-linear estimation (with discussion)., Journal of the Royal Statistical Society B 33 171-201. · Zbl 0232.62029 [2] Clarke, G. P. Y. (1980). Moments of the least squares estimators in a nonlinear regression model., Journal of the Royal Statistical Society B 42 227-237. · Zbl 0436.62054 [3] Easton, G. S. and Ronchetti, E. (1986). General saddelpoint approximations with applications to, L statistics. Journal of the American Statistical Association 81 420-430. · Zbl 0611.62014 · doi:10.2307/2289231 [4] Hajek, J. and Sidak, Z. (1967)., Theory of Rank Tests . Academic Press, New York. · Zbl 0161.38102 [5] Huber, P. J. (1981)., Robust statisitics . Wiley, New York. · Zbl 0536.62025 [6] Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares indent estimators., Annals of Mathematical Statistics 40 633-643. · Zbl 0193.47201 · doi:10.1214/aoms/1177697731 [7] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006)., Robust Statistics: Theory and Methods . Wiley, Chichester. · Zbl 1094.62040 [8] Portnoy, S. (1984). Asymptotic behaviour of, M -estimators of p regression parameters when p 2 / n is large. I. Consistency. Annals of Statistics 12 1298-1309. · Zbl 0584.62050 · doi:10.1214/aos/1176346793 [9] Withers, C. S. (1982a). The distribution and quantiles of a function of parameter estimates., Annals of the Institute of Statistical Mathematics A 34 55-68. · Zbl 0485.62016 · doi:10.1007/BF02481007 [10] Withers, C. S. (1982b). Second order inference for asymptotically normal random variables., Sankhyā 44 19-27. · Zbl 0549.62027 [11] Withers, C. S. (1983). Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals., Annals of Statistics 11 577-587. · Zbl 0531.62015 · doi:10.1214/aos/1176346163 [12] Withers, C. S. (1987). Bias reduction by Taylor series., Communications in Statistics-Theory and Methods 16 2369-2384. · Zbl 0628.62022 · doi:10.1080/03610928708829512 [13] Withers, C. S. and Nadarajah, S. (2009). Asymptotic properties of, M -estimates. Technical Report , Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand. · Zbl 1221.62077 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.