×

Posterior convergence and model estimation in Bayesian change-point problems. (English) Zbl 1329.62219

Summary: We study the posterior distribution of the Bayesian multiple change-point regression problem when the number and the locations of the change-points are unknown. While it is relatively easy to apply the general theory to obtain the \(O(1/\sqrt{n})\) rate up to some logarithmic factor, showing the parametric rate of convergence of the posterior distribution requires additional work and assumptions. Additionally, we demonstrate the asymptotic normality of the segment levels under these assumptions. For inferences on the number of change-points, we show that the Bayesian approach can produce a consistent posterior estimate. Finally, we show that consistent posterior for model selection necessarily implies that the parametric rate for posterior estimation stated previously cannot be uniform over the class of models we consider. This is the Bayesian version of the same phenomenon that has been noted and studied by other authors.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G08 Nonparametric regression and quantile regression
62F15 Bayesian inference

References:

[1] Barron, A., Schervish, M. J., and Wasserman, L. The consistency of posterior distributions in nonparametric problems., Annals of Statistics , 27(2):536-561, 1999. · Zbl 0980.62039 · doi:10.1214/aos/1018031206
[2] S. Ben Hariz, Wylie, J. J., and Zhang, Q. Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences., Annals of Statistics , 35(4) :1802-1826, 2007. · Zbl 1147.62043 · doi:10.1214/009053606000001596
[3] Castillo, I. A semi-parametric Bernstein-von Mises theorem., Preprint , 2009.
[4] Choi, T. and Schervish, M. J. On posterior consistency in nonparametric regression problems., Journal of Multivariate Analysis , 98(10) :1969-1987, 2007. · Zbl 1138.62020 · doi:10.1016/j.jmva.2007.01.004
[5] Fearnhead, P. Exact and efficient bayesian inference for multiple changepoint problems., Statistics and Computing , 16(2):203-213, 2006. · doi:10.1007/s11222-006-8450-8
[6] Fearnhead, P. Computational methods for complex stochastic systems: a review of some alternatives to mcmc., Statistics and Computing , 18(2):151-171, 2008. · doi:10.1007/s11222-007-9045-8
[7] Ghosal, S., Ghosh, J. K., and Ramamoorthi, R. V. Posterior consistency of Dirichlet mixtures in density estimation., Annals of Statistics , 27(1):143-158, 1999. · Zbl 0932.62043 · doi:10.1214/aos/1018031105
[8] Ghosal, S., Ghosh, J. K., and Samanta, T. On convergence of posterior distributions., Annals of Statistics , 23(6) :2145-2152, 1995. · Zbl 0858.62024 · doi:10.1214/aos/1034713651
[9] Ghosal, S., Ghosh, J. K., and Samanta, T. Approximation of the posterior distribution in a change-point problem., Annals of the Institute of Statistical Mathematics , 51(3):479-497, 1999. · Zbl 0938.62023 · doi:10.1023/A:1003998005295
[10] Ghosal, S., Ghosh, J. K., and Van der Vaart, A. W. Convergence rates of posterior distributions., Annals of Statistics , 28(2):500-531, 2000. · Zbl 1105.62315 · doi:10.1214/aos/1016218228
[11] Ghosal, S., Lember, J., and Van Der Vaart, A. Nonparametric Bayesian model selection and averaging., Electronic Journal of Statistics , 2:63-89, 2008. · Zbl 1135.62028 · doi:10.1214/07-EJS090
[12] Ghosal, S. and Samanta, T. Asymptotic behaviour of Bayes estimates and posterior distribution in multiparameter nonregular cases., Mathematical Methods of Statistics , 4(4):361-388, 1995. · Zbl 0840.62033
[13] Ghosal, S. and Van Der Vaart, A. Convergence rates of posterior distributions for noniid observations., Annals of Statistics , 35(1):192-223, 2007. · Zbl 1114.62060 · doi:10.1214/009053606000001172
[14] Goldenshluger, A., Tsybakov, A., and Zeevi, A. Optimal change-point estimation from indirect observations., Annals of Statistics , 34(1):350-372, 2006. · Zbl 1091.62021 · doi:10.1214/009053605000000750
[15] Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination., Biometrika , 82(4):711-732, 1995. · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[16] Ibragimov, I. A. and Khasminskii, R. Z., Statistical estimation-asymptotic theory . Applications of mathematics. Springer-Verlag, New York, 1981.
[17] Ji, C. and Seymour, L. A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood., Annals of Applied Probability , 6(2):423-443, 1996. · Zbl 0856.62082 · doi:10.1214/aoap/1034968138
[18] Kim, Y. and Lee, J. A Bernstein-von Mises theorem in the nonparametric right-censoring model., Annals of Statistics , 32(4) :1492-1512, 2004. · Zbl 1047.62043 · doi:10.1214/009053604000000526
[19] Lian, H. On the consistency of Bayesian function approximation using step functions., Neural Computation , 19(11) :2871-2880, 2007. · Zbl 1144.62310 · doi:10.1162/neco.2007.19.11.2871
[20] Lian, H., Some topics on statistical theory and applications . PhD thesis, Brown University, 2007.
[21] Lian, H. Bayes and empirical Bayes inference in change-point problems., Communications in Statistics - Theory and Methods , 38(3):419-430, 2009. · Zbl 1159.62014 · doi:10.1080/03610920802220801
[22] Lian, H., Thompson, W. A., Thurman, R., Stamatoyannopoulos, J. A., Noble, W. S., and Lawrence, C. E. Automated mapping of large-scale chromatin structure in encode., Bioinformatics , 24(17) :1911-1916, 2008.
[23] Liu, J. S. and Lawrence, C. E. Bayesian inference on biopolymer models., Bioinformatics , 15(1):38-52, 1999.
[24] Pflug, G. C. The limiting log-likelihood process for discontinuous density families., Zeitschrift Fur Wahrscheinlichkeitstheorie Und Verwandte Gebiete , 64(1):15-35, 1983. · Zbl 0525.62034 · doi:10.1007/BF00532591
[25] Polfeldt, T. Minimum variance order when estimating the location of an irregularity in the density., Annals of Mathematical Statistics , 41(2):673-679, 1970. · Zbl 0198.23402 · doi:10.1214/aoms/1177697112
[26] Rivoirard, V. and Rousseau, J. Bernstein-von Mises theorem for linear functionals of the density., Preprint , 2009. · Zbl 1257.62036 · doi:10.1214/12-AOS1004
[27] Schwartz, L. On Bayes procedures., Z. Wahrsch. Verw. Gabiete , 4:10-26, 1965. · Zbl 0158.17606 · doi:10.1007/BF00535479
[28] Scricciolo, C. On rates of convergence for Bayesian density estimation., Scandinavian Journal of Statistics , 34(3):626-642, 2007. · Zbl 1150.62018 · doi:10.1111/j.1467-9469.2006.00540.x
[29] Shen, X. T. and Wasserman, L. Rates of convergence of posterior distributions., Annals of Statistics , 29(3):687-714, 2001. · Zbl 1041.62022 · doi:10.1214/aos/1009210686
[30] van der Vaart, A. W., Asymptotic statistics . Cambridge University Press, Cambridge, UK; New York, 1998. · Zbl 0910.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.