×

Stein block thresholding for wavelet-based image deconvolution. (English) Zbl 1329.62392

Summary: We propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov smoothness spaces, and shows that our block estimator can achieve the optimal minimax rate, or is at least nearly-minimax in the least favorable situation. The resulting algorithm is simple to implement and fast. Its computational complexity is dominated by that of the FFT. We report a simulation study to support our theoretical findings. The practical performance of our block vaguelet-wavelet deconvolution compares very favorably to existing competitors on a large set of test images.

MSC:

62M40 Random fields; image analysis
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

ForWaRD
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] F. Abramovich and B. W. Silverman. Wavelet decomposition approaches to statistical inverse problems., Biometrika , 85:115-129, 1998. · Zbl 0908.62095 · doi:10.1093/biomet/85.1.115
[2] R. J. Adler., An introduction to continuity, extrema, and related topics for general Gaussian processes . Institute of Mathematical Statistics, Hayward, CA, 1990. · Zbl 0747.60039
[3] T. Cai. On adaptive wavelet estimation of a derivative and other related linear inverse problems., J. Statistical Planning and Inference , 108:329-349, 2002. · Zbl 1016.62025 · doi:10.1016/S0378-3758(02)00316-6
[4] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs. A variational formulation for frame-based inverse problems., Inv. Prob. , 23 :1495-1518, 2007. · Zbl 1141.65366 · doi:10.1088/0266-5611/23/4/008
[5] C. Chesneau. Wavelet estimation via block thresholding: A minimax study under the, L p risk. Statistica Sinica , 18(3) :1007-1024, 2008. · Zbl 05361942
[6] C. Chesneau, M. J. Fadili, and J.-L. Starck. Stein block thresholding for image denoising., Applied and Computational Harmonic Analysis , 28(1):67-88, 2010. · Zbl 1180.94005 · doi:10.1016/j.acha.2009.07.003
[7] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint., Comm. Pure Appl. Math. , 57 :1413-1541, 2004. · Zbl 1077.65055 · doi:10.1002/cpa.20042
[8] R. Devore, G. Kerkyacharian, D. Picard, and V. Temlyakov. On mathematical methods of learning., Foundations of Computational Mathematics , 1:3-58, 2006. · Zbl 1146.62322 · doi:10.1007/s10208-004-0158-6
[9] D. Donoho and M. Raimondo. A fast wavelet algorithm for image deblurring., The Australian & New Zealand Industrial and Applied Mathematics Journal , 46:C29-C46, 2005. · Zbl 1078.65573
[10] D.L. Donoho. Nonlinear solution of inverse problems by wavelet-vaguelette decomposition., Applied and Computational Harmonic Analysis , 2:101-126, 1995. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008
[11] M. J. Fadili and J.-L. Starck. Sparse representation-based image deconvolution by iterative thresholding. In, ADA IV , France, 2006. Elsevier.
[12] M. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image restoration., ITIP , 12(8):906-916, 2003. · Zbl 1279.94015 · doi:10.1109/TIP.2003.814255
[13] I.M. Johnstone, G. Kerkyacharian, D. Picard, and M. Raimondo. Wavelet deconvolution in a periodic setting., Journal of the Royal Statistical Society. Series B. Methodological , 66:547-573, 2004. · Zbl 1046.62039 · doi:10.1111/j.1467-9868.2004.02056.x
[14] J. Kalifa, S. Mallat, and B. Rougé. Image deconvolution in mirror wavelet bases. In, IEEE ICIP , volume 1, pages 565-569, 1998.
[15] S. Mallat., A wavelet tour of signal processing . Academic Press, 2nd edition, 1998. · Zbl 0937.94001
[16] Y. Meyer., Wavelet and Operators . Cambridge University Press, 1992. · Zbl 0776.42019
[17] R. Neelamani, H. Choi, and R. Baraniuk. Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems., IEEE Transactions on signal processing , 52:418-433, 2004. · Zbl 1369.94238 · doi:10.1109/TSP.2003.821103
[18] J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux. A sure approach for digital signal/image deconvolution problems., IEEE Transactions on Image Processing , 57(12) :4616-4632, 2009. · Zbl 1392.94041 · doi:10.1109/TSP.2009.2026077
[19] A.B. Tsybakov., Introduction à l’estimation nonparametrique . Springer, New York, 2004. · Zbl 1029.62034
[20] C. Vonesh, S. Ramani, and M. Unser. Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint. In, IEEE International Conference on Image Processing, ICIP’08 , pages 665-668, San Diego, CA, October 2008.
[21] Wavelab 802. Wavelab toolbox. http://www-stat.stanford.edu/ wavelab, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.