×

zbMATH — the first resource for mathematics

The role of family-based designs in genome-wide association studies. (English) Zbl 1329.62430
Summary: Genome-Wide Association Studies (GWAS) offer an exciting and promising new research avenue for finding genes for complex diseases. Traditional case-control and cohort studies offer many advantages for such designs. Family-based association designs have long been attractive for their robustness properties, but robustness can mean a loss of power. In this paper we discuss some of the special features of family designs and their relevance in the era of GWAS.

MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
92D10 Genetics and epigenetics
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Clayton, D. (1999). A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am. J. Hum. Genet. 65 1170-1177.
[2] Devlin, B. and Roeder, K. (1999). Genomic control for association studies. Biometrics 55 997-1004. · Zbl 1059.62640
[3] Di, X., Matsuzaki, H., Webster, T. A., Hubbell, E., Liu, G., Dong, S., Bartell, D., Huang, J., Chiles, R., Yang, G., Shen, M. M., Kulp, D., Kennedy, G. C., Mei, R., Jones, K. W. and Cawley, S. (2005). Dynamic model based algorithms for screening and genotyping over 100k snps on oligonucleotide microarrays. Bioinformatics 21 1958-1963.
[4] Douglas, J. A., Skol, A. D. and Boehnke, M. (2002). Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. Am. J. Hum. Genet. 70 487-495.
[5] Dudbridge, F. (2008). Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum. Hered. 66 87-98.
[6] Eskin, E. (2008). Increasing power in association studies by using linkage disequilibrium structure and molecular function as prior information. Genome Res. 18 653-660.
[7] Falk, C. T. and Rubinstein, P. (1987). Haplotype relative risks: An easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51 227-233.
[8] Fardo, D. W., Ionita, I. and Lange, C. (2008). Recovering unused information in genome-wide association studies: The benefit of analyzing snps out of hardy-Weinberg equilibrium. European Journal of Human Genetics 17 1676-1682.
[9] Feingold, E., Brown, P. O. and Siegmund, D. (1993). Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am. J. Hum. Genet. 53 234-251.
[10] Feng, T., Zhang, S. and Sha, Q. (2007). Two-stage association tests for genome-wide association studies based on family data with arbitrary family structure. European Journal of Human Genetics 15 1169-1175.
[11] Gordon, D., Finch, S. J., Nothnagel, M. and Ott, J. (2002). Power and sample size calculations for case-control genetic association tests when errors are present: Application to single nucleotide polymorphisms. Hum. Hered. 54 22-33.
[12] Gordon, D., Heath, S. C., Liu, X. and Ott, J. (2001). A transmission/disequilibrium test that allows for genotyping errors in the analysis of single-nucleotide polymorphism data. Am. J. Hum. Genet. 69 371-380.
[13] Gunderson, K. L., Steemers, F. J., Ren, H., Ng, P., Zhou, L., Tsan, C., Chang, W., Bullis, D., Musmacker, J., King, C., Lebruska, L. L., Barker, D., Oliphant, A., Kuhn, K. M. and Shen, R. (2006). Whole-genome genotyping. Methods Enzymol. 410 359-376.
[14] Horvath, S., Xu, X., Lake, S. L., Silverman, E. K., Weiss, S. T. and Laird, N. M. (2004). Family-based tests for associating haplotypes with general phenotype data: Application to asthma genetics. Genetic Epidemiology 26 61-69.
[15] Ionita-Laza, I., McQueen, M. B., Laird, N. M. and Lange, C. (2007). Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100k scan. Am. J. Hum. Genet. 81 607-614.
[16] Jiang, H., Harrington, D., Raby, B. A., Bertram, L., Blacker, D., Weiss, S. T. and Lange, C. (2006). Family-based association test for time-to-onset data with time-dependent differences between the hazard functions. Genetic Epidemiology 30 124-132.
[17] Kang, S. J., Gordon, D. and Finch, S. J. (2004). What snp genotyping errors are most costly for genetic association studies? Genetic Epidemiology 26 132-141.
[18] Laird, N. M. and Lange, C. (2006). Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 7 385-394.
[19] Lange, C., DeMeo, D. L. and Laird, N. M. (2002). Power and design considerations for a general class of family-based association tests: Quantitative traits. Am. J. Hum. Genet. 71 1330-1341.
[20] Lange, C. and Laird, N. M. (2002). Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 71 575-584.
[21] Lange, C., Silverman, E. K., Xu, X., Weiss, S. T. and Laird, N. M. (2003). A multivariate family-based association test using generalized estimating equations: Fbat-gee. Biostatistics 4 195-206. · Zbl 1139.62317
[22] Lange, C., Van Steen, K., Andrew, T., Lyon, H., DeMeo, D., Raby, B., Murphy, A., Silverman, E., MacGregor, A., Weiss, S. and Laird, N. (2004). A family-based association test for repeatedly measured quantitative traits adjusting for unknown environmental and/or polygenic effects. Stat. Appl. Genet. Mol. Biol. 3 .
[23] Lazzeroni, L. C. and Lange, K. (1993). A conditional inference framework for extending the transmission/disequilibrium test. Hum. Hered. 48 67-81.
[24] Liu, Y., Tritchler, D. and Bull, S. B. (2002). A unified framework for transmission-disequilibrium test analysis of discrete and continuous traits. Genetic Epidemiology 22 26-40.
[25] Lu, A. T. and Cantor, R. M. (2007). Weighted variance fbat: A powerful method for including covariates in fbat analyses. Genetic Epidemiology 31 327-337.
[26] Lunetta, K. L., Faraone, S. V., Biederman, J. and Laird, N. M. (2000). Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 66 605-614.
[27] Manolio, T. A., Rodriguez, L. L., Brooks, L., Abecasis, G., Ballinger, D., Daly, M., Donnelly, P., Faraone, S. V., Frazer, K., Gabriel, S., Gejman, P., Guttmacher, A., Harris, E. L., Insel, T., Kelsoe, J. R., Lander, E., McCowin, N., Mailman, M. D., Nabel, E., Ostell, J., Pugh, E., Sherry, S., Sullivan, P. F., Thompson, J. F., Warram, J., Wholley, D., Milos, P. M. and Collins, F. S. (2007). New models of collaboration in genome-wide association studies: The genetic association information network. Nat. Genet. 39 1045-1051.
[28] Marchini, J., Howie, B., Myers, S., McVean, G. and Donnelly, P. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39 906-913.
[29] Matsuzaki, H., Dong, S., Loi, H., Di, X., Liu, G., Hubbell, E., Law, J., Berntsen, T., Chadha, M., Hui, H., Yang, G., Kennedy, G. C., Webster, T. A., Cawley, S., Walsh, P. S., Jones, K. W., Fodor, S. P. and Mei, R. (2004). Genotyping over 100,000 snps on a pair of oligonucleotide arrays. Nat. Methods 1 109-111.
[30] Murphy, A., Weiss, S. T. and Lange, C. (2008). Screening and replication using the same data set: Testing strategies for family-based studies in which all probands are affected. PLoS Genetics 4 e1000197.
[31] Ott, J. (1989). Statistical properties of the haplotype relative risk. Genetic Epidemiology 6 127-130.
[32] Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155 945-959. · Zbl 1083.62537
[33] Rabinowitz, D. and Laird, N. (2000). A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 50 211-223.
[34] Rakovski, C. S., Xu, X., Lazarus, R., Blacker, D. and Laird, N. M. (2007). A new multimarker test for family-based association studies. Genetic Epidemiology 31 9-17.
[35] Roeder, K., Devlin, B. and Wasserman, L. (2007). Improving power in genome-wide association studies: Weights tip the scale. Genetic Epidemiology 31 741-747.
[36] Roeder, K. and Luca, D. (2008). Searching for disease susceptibility variants in structured populations. Genomics . (Epub ahead of print.)
[37] Schaid, D. J. (1996). General score tests for associations of genetic markers with disease using cases and their parents. Genetic Epidemiology 13 423-449.
[38] Schneiter, K., Laird, N. and Corcoran, C. (2005). Exact family-based association tests for biallelic data. Genetic Epidemiology 29 185-194.
[39] Skol, A. D., Scott, L. J., Abecasis, G. R. and Boehnke, M. (2006). Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38 209-213.
[40] Sobel, E., Papp, J. C. and Lange, K. (2002). Detection and integration of genotyping errors in statistical genetics. Am. J. Hum. Genet. 70 496-508.
[41] Song, K., Lu, Q., Lin, X., Waterworth, D. and Elson, R. C. (2007). Genome-wide association studies using an adaptive two-stage analysis for a case-control design. BMC Proc 1 S147.
[42] Spielman, R. S., McGinnis, R. E. and Ewens, W. J. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (iddm). Am. J. Hum. Genet. 52 506-516.
[43] Van Steen, K., McQueen, M. B., Herbert, A., Raby, B., Lyon, H., Demeo, D. L., Murphy, A., Su, J., Datta, S., Rosenow, C., Christman, M., Silverman, E. K., Laird, N. M., Weiss, S. T. and Lange, C. (2005a). Genomic screening and replication using the same data set in family-based association testing. Nat. Genet. 37 683-691.
[44] Van Steen, K., McQueen, M. B., Herbert, A., Rosenow, C., Silverman, E. K., Laird, N. M., Weiss, S. T. and Lange, C. (2005b). Genomic screening in family based association testing and the multiple testing problem. Genetic Epidemiology 29 282-282.
[45] Wadma, M. (2006). The chips are down. Nature Digest 4 256-257.
[46] Wakefield, J. (2008). Bayes factors for genome-wide association studies: Comparison with p -values. Genetic Epidemiology . (Epub ahead of print.)
[47] Wasserman, L. and Roeder, K. (2006). Weighted hypothesis testing. Technical Report 83, Dept. Statistics, Carnagie Mellon Univ. Available at . · Zbl 1329.62435
[48] Weinberg, C. R. (1999). Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am. J. Hum. Genet. 65 229-235.
[49] Whittemore, A. S. (2006). Population structure in genetic association studies. In Proceedings of the Joint Statistical Meeting .
[50] Xu, X., Rakovski, C., Xu, X. and Laird, N. (2006). An efficient family-based association test using multiple markers. Genetic Epidemiology 30 620-626.
[51] Zheng, G., Song, K. and Elston, R. C. (2007). Adaptive two-stage analysis of genetic association in case-control designs. Human Heredity 63 175-186.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.