×

The self-propulsion of a body with moving internal masses in a viscous fluid. (English) Zbl 1329.70052

Summary: An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier-Stokes equations and equations of motion for a rigid body. A nonstationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid in a gravitational field, which is caused by the motion of internal material points, is explored. The possibility of self-propulsion of a body in an arbitrary given direction is shown.

MSC:

70H99 Hamiltonian and Lagrangian mechanics
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

OpenFOAM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2001 (Russian).
[2] Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., Asymptotic Stability and Associated Problems of a Falling Rigid Body, Regul. Chaotic Dyn., 2007, vol. 12, no. 5, pp. 531–565. · Zbl 1229.37107 · doi:10.1134/S1560354707050061
[3] Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp. · Zbl 1144.37324 · doi:10.1063/1.2166530
[4] Lamb, H., Hydrodynamics, 6th ed., New York: Dover, 1945.
[5] Schlichting, H., Grenzschichttheorie, Karlsruhe: G.Braun, 1982.
[6] Lindgren, E. R., The Motion of a Sphere in an Incompressible Viscous Fluid at Reynolds Number Considerably Less Than One, Phys. Scripta, 1999, vol. 60, pp. 97–110. · Zbl 0968.76534 · doi:10.1238/Physica.Regular.060a00097
[7] Gushchin, V.A. and Matyushin, P. V., Mathematical Modelling of the 3D Incompressible Fluid Flows, Matem. Mod., 2006, vol. 18, no. 5, pp. 5–20 (Russian). · Zbl 1121.76043
[8] Allen, J. J., Jouanne, Y., and Shashikanth, B.N., Vortex with a Moving Sphere, J. Fluid Mech., 2007, vol. 587, pp. 337–346. · Zbl 1141.76301 · doi:10.1017/S0022112007007537
[9] Tallapragada, Ph. and Kelly, S., Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Ring in an Ideal Fluid, Regul. Chaotic Dyn., 2012, vol. 18, nos. 1–2, pp. 21–32. · Zbl 1273.76460 · doi:10.1134/S1560354713010024
[10] Saffman, P.G., The Self-Propulsion of a Deformable Body in a Perfect Fluid, J. Fluid Mech., 1967, vol. 28, no. 2. pp. 385–389. · Zbl 0147.44201 · doi:10.1017/S0022112067002149
[11] Galper, A.R. and Miloh, T., Motion Stability of a Deformable Body in an Ideal Fluid with Applications to the N Spheres Problem, Phys. Fluids, 1998, vol. 10, no. 1, pp. 119–130. · Zbl 1185.76492 · doi:10.1063/1.869570
[12] Galper, A.R. and Miloh, T., Hydrodynamics and Stability of a Deformable Body Moving in the Proximity of Interfaces, Phys. Fluids, 1999, vol. 11, no. 4, pp. 795–806. · Zbl 1147.76394 · doi:10.1063/1.869952
[13] Lighthill, M. J., On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers, Comm. Pure Appl. Math., 1952, vol. 5, no. 2, pp. 109–118. · Zbl 0046.41908 · doi:10.1002/cpa.3160050201
[14] Koiller, J., Ehlers, K., and Montgomery, R., Problems and Progress in Microswimming, J. Nonlinear Sci., 1996, vol. 6, pp. 507–541. · Zbl 0867.76099 · doi:10.1007/BF02434055
[15] Ehlers, K.M., Koiller, J., Micro-swimming Without Flagella: Propulsion by Internal Structures, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 623–652. · Zbl 1252.76098 · doi:10.1134/S1560354711060050
[16] Chernous’ko, F. L., Motion of a Body in a Fluid Due to Attached-Link Oscillations, Dokl. Akad. Nauk, vol. 431, no. 1, pp. 46–49 [Dokl. Phys., 2010, vol. 55, no. 3, pp. 138–141].
[17] Optimal Motion of a Multilink System in a Resistive Medium, Tr. Inst. Mat. i Mekh. UrO RAN, 2011, vol. 17,no. 2, pp. 240–255 [Proc. Steklov Inst. Math., 2012, vol. 276, no. 1 Suppl., pp. 63–79].
[18] Chernous’ko, F. L., Bolotnik, N.N, and Figurina, T.Yu., Optimal Control of Vibrationally Excited Locomotion Systems, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 85–99. · Zbl 1290.68115 · doi:10.1134/S1560354713010061
[19] Guasto, J. S., Johnson, K.A., and Gollub, J.P., Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions, Phys. Rev. Lett., 2010, vol. 105, 168102, 4 pp. · doi:10.1103/PhysRevLett.105.168102
[20] Hieber, S.E. and Koumoutsakos, P., An Immersed Boundary Method for Smoothed Particle Hydrodynamics of Self-Propelled Swimmers, J. Comput. Phys., 2008, vol. 227, no. 19, pp. 8636–8654. · Zbl 1227.76052 · doi:10.1016/j.jcp.2008.06.017
[21] Sahin, M., Mohseni, K., and Colin, S.P., The Numerical Comparison of Flow Patterns and Propulsive Performances for the Hydromedusae Sarsia Sp. and Aequorea Victoria, J. Exp. Biol., 2009, vol. 212, pp. 2656–2667. · doi:10.1242/jeb.025536
[22] Eldredge, J.D., Numerical Simulations of Undulatory Swimming at Moderate Reynolds Number, Bioinspir. Biomim., 2006, vol. 1, no. 4, S19–S24. · doi:10.1088/1748-3182/1/4/S03
[23] Eldredge, J.D., Colonius, T., and Leonard, A., A Vortex Particle Method for Two-Dimensional Compressible Flow, J. Comput. Phys., 2002, vol. 179, no. 2, pp. 371–399. · Zbl 1130.76393 · doi:10.1006/jcph.2002.7060
[24] Yatsun, S. F., Bezmen, P.A., Sapronov, K.A., and Rublev, S.B., Dynamics of the Vibration Mobile Robot with Internal Movable Mass, Izv. Kursk. Gos. Tekhn. Univ., 2010, vol. 31, no. 2, pp. 21–31 (Russian).
[25] Chernous’ko, F. L. and Bolotnik, N.N., Mobile Robots Controlled by the Motion of Internal Bodies, Tr. Inst. Mat. i Mekh. UrO RAN, 2010, vol. 16, no. 5, pp. 213–222 (Russian).
[26] Volkova, L.Yu. and Jatsun, S. F., Control of the Three-Mass Robot Moving in the Liquid Environment, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 4, pp. 845–857 (Russian).
[27] Childress, S., Spagnolie, S.E., and Tokieda, T., A Bug on a Raft: Recoil Locomotion in a Viscous Fluid, J. Fluid Mech., 2011, vol. 669, pp. 527–556. · Zbl 1225.76318 · doi:10.1017/S002211201000515X
[28] Ramodanov, S.M. and Tenenev, V.A., Motion of a Body with Variable Distribution of Mass in a Boundless Viscous Liquid, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 3, pp. 635–647 (Russian).
[29] Ramodanov, S. M., Tenenev, V.A., and Treschev, D. V., Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 547–558. · Zbl 1344.70031 · doi:10.1134/S1560354712060068
[30] Vetchanin, E. V. and Tenenev, V.A., Motion Control Simulating in a Viscous Liquid of a Body with Variable Geometry of Weights, Computer Research and Modeling, 2011, vol. 3, no. 4, pp. 371–381 (Russian).
[31] Kozlov, V.V. and Ramodanov, S. M., The Motion of a Variable Body in an Ideal Fluid, Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 592–601 [J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 579–587]. · Zbl 1046.76008
[32] Mougin, G. and Magnaudet, J., The Generalized Kirchhoff Equations and Their Application to the Interaction between a Rigid Body and an Arbitrary Time-Dependent Viscous Flow, Internat. J. Multiphase Flow, 2002, vol. 28, pp. 1837–1851. · Zbl 1137.76687 · doi:10.1016/S0301-9322(02)00078-2
[33] Calmet, I. and Magnaudet, J., Large-Eddy Simulation of High-Schmidt Number Mass Transfer in a Turbulent Channel Flow, Phys. Fluids, 1997, vol. 9, no. 2, pp. 438–455. · doi:10.1063/1.869138
[34] Rai, M. M. and Moin, P., Direct Simulations of Turbulent Flow Using Finite-Difference Schemes, J. Comput. Phys., 1991, vol. 96, pp. 15–53. · Zbl 0726.76072 · doi:10.1016/0021-9991(91)90264-L
[35] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., and von Loebbecke, A., A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries, J. Comp. Phys., 2008, vol. 227, pp. 4825–4852. · Zbl 1388.76263 · doi:10.1016/j.jcp.2008.01.028
[36] Loitsansky, L.G., Fluid and Gas Mechanics, Moscow: Nauka, 1973 (Russian).
[37] OpenFOAM: The Open Source CFD Toolbox: Programmer’s Guide: v. 2.1.0, 15th Dec 2011.
[38] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Taylor & Francis Group, 1980.
[39] Dupeux, G., Goff, A. L., Quéré, D., and Clanet, C., The Spinning Ball Spiral, New J. Phys., 2010, vol. 12, 093004, 12pp · doi:10.1088/1367-2630/12/9/093004
[40] Kozlov, V.V. and Ramodanov, S. M., On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Fluid, Dokl. Akad. Nauk, 2002, vol. 382, no. 4, pp. 478–481 [Dokl. Phys., 2002, vol. 47, no. 2, pp. 132–135].
[41] Kozlov, V.V. and Onishchenko, D. A., On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Unlimited Fluid, in Problems of Mechanics: To the 90th Birthday of A.Yu. Ishlinskii, D.M. Klimov (Ed.), Moscow: Fizmatlit, 2003, pp. 465–476 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.