A strain space gradient plasticity theory for finite strain. (English) Zbl 1329.74049

Summary: In this paper, an extension to the finite deformation regime of the infinitesimal theories of strain gradient plasticity discussed in a paper by the first author et al. [Int. J. Solids Struct. 38, No. 46–47, 8503–8527 (2001; Zbl 1047.74522)] is presented which extends and generalizes the previous works of the first author et al. [“A finite deformation second gradient theory of plasticity”, C. R. Acad. Sci., Paris, Sér. IIb, Méc. 329, No. 11, 797–802 (2001; doi:10.1016/S1620-7742(01)01400-3)] and the last author et al. [“A second gradient elastoplastic cohesive-frictional model for geomaterials”, C. R. Acad. Sci., Paris, Sér. IIb, Méc. 329, No. 10, 735–739 (2001; doi:10.1016/S1620-7742(01)01393-9)]. Central to the proposed theory are the kinematic assumptions concerning the decomposition of the assumed measures of strain and hyperstrain into an elastic and a plastic part. Following modern treatments of finite deformation plasticity, a multiplicative decomposition of the deformation gradient is postulated, while an additive decomposition is adopted for the second deformation gradient, as in the paper by the first author et al. [“A finite deformation second gradient theory of plasticity”, C. R. Acad. Sci., Paris, Sér. IIb, Méc. 329, No. 11, 797–802 (2001; doi:10.1016/S1620-7742(01)01400-3)]. The elastic constitutive equations for Kirchhoff stress and double stress tensors are obtained by assuming the existence of a suitable free energy function in the spatial description. The requirements of (i) invariance for rigid body motions superimposed upon the intermediate configuration; and, (ii) spatial covariance, see the book by J.E. Marsden and T.J.R. Hughes [Mathematical foundations of elasticity. New York: Dover Publications Inc. (1994)], provide the corresponding material version of the hyperelastic constitutive equations. A fully covariant formulation of the evolution equations for the plastic strain and hyperstrain tensors, as well as for the internal variables is obtained by a straightforward application of the principle of maximum dissipation, after introducing a suitable yield condition in strain space. The resulting strain-space theory of second gradient plasticity can be considered an extension of the finite deformation plasticity theory proposed by J. C. Simo [Comput. Methods Appl. Mech. Eng. 66, No. 2, 199–219 (1988; Zbl 0611.73057)] to elastoplastic media with microstructure. As an example of application, a single-mechanism, isotropic hardening second gradient model for cohesive-frictional materials is proposed in which the cohesive component of the shear strength is assumed to increase with the magnitude of elastic hyperstrains, as advocated by, e.g. N. A. Fleck and J. W. Hutchinson [in: Advances in Applied Mechanics. Vol. 33. San Diego, CA: Academic Press. 295–361 (1997; Zbl 0894.73031)] for metals, based on both experimental observations and micromechanical considerations. Due to the internal length scales provided by the microstructure, the model is ideally suited for the analysis of failure problems in which strain localization into shear band occurs.


74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74A60 Micromechanical theories
74M25 Micromechanics of solids
Full Text: DOI


[1] Chambon, R.; Caillerie, D.; Matsushima, T., Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies, Int. J. solids struct., 38, 8503-8527, (2001) · Zbl 1047.74522
[2] Chambon, R.; Caillerie, D.; Tamagnini, C., A finite deformation second gradient theory of plasticity, C.R. acad. sci., 329, Série IIb, 797-802, (2001)
[3] Tamagnini, C.; Chambon, R.; Caillerie, D., A second gradient elastoplastic cohesive-frictional model for geomaterials, C.R. acad. sci., 329, Série IIb, 735-739, (2001)
[4] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1994), Dover Publications, Inc New York
[5] Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part I: continuum formulation, Comp. methods appl. mech. engrg., 66, 199-219, (1988) · Zbl 0611.73057
[6] Fleck, N.A.; Hutchinson, J.W.; Hutchinson, J.W.; Wu, T.Y., Strain gradient plasticity, Advances in applied mechanics, vol. 33, (1997), Academic Press · Zbl 0894.73031
[7] Truesdell, C.A.; Noll, W.; Flügge, S., The non-linear field theories of mechanics, Encyclopedia of physics, vol. III/3, (1965), Springer Berlin
[8] Eringen, A.C.; Kafadar, C.B.; Eringen, A., Polar field theories, Continuum physics, vol. III/3, (1976), Springer Berlin
[9] Eringen, A.C., Microcontinuum field theories. I. foundations and solids, (1998), Springer Berlin · Zbl 0953.74002
[10] Stelmashenko, N.A.; Walls, M.G.; Brown, L.M.; Milman, Y.V., Microindentation on W and mo oriented single crystals: an STM study, Acta metall. mater., 42, 10, 2855-2865, (1993)
[11] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta metall. mater., 42, 2, 475-487, (1994)
[12] Tatsuoka, F.; Soto, S.; Tanaka, T.; Kani, K.; Kimura, Y., Particle size effects on bearing capacity of footings on granular material, (), 133-138
[13] Rudnicki, J.W.; Rice, J.R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. mech. phys. solids, 23, 371-394, (1975)
[14] Rice, J.R., The localization of plastic deformations, (), 207-220
[15] Kolymbas, D., Bifurcation analysis for sand samples with a non-linear constitutive equation, Ingenieur-arch., 50, 131-140, (1981) · Zbl 0452.73023
[16] Desrues, J.; Chambon, R., Shear band analysis for granular materials: the question of incremental non-linearity, Ingenieur-arch., 59, 187-196, (1989)
[17] Chambon, R.; Crochepeyre, S.; Desrues, J., Localization criteria for non-linear constitutive equations of geomaterials, Mech. cohes.-frict. mater., 5, 61-82, (2000)
[18] Bǎzant, Z.P.; Belytschko, T., Wave propagation in strain softening bar: exact solution, J. engrg. mech. ASCE, 111, 381-389, (1985)
[19] Bǎzant, Z.P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. appl. mech., ASME, 55, 287-293, (1988) · Zbl 0663.73075
[20] de Borst, R., Numerical methods for bifurcation analysis in geomechanics, Ingenieur-arch., 59, 160-174, (1989)
[21] Cosserat, E.; Cosserat, F., Théorie des corps deformables, (1909), Hermann Paris · JFM 40.0862.02
[22] Truesdell, C.A.; Toupin, R.A.; Flügge, S., The classical field theories, Encyclopedia of physics, vol. III/1, (1960), Springer Berlin
[23] R.D. Mindlin, H.F. Tiersten, Effect of couple-stresses in linear elasticity, Arch. Rational Mech. Anal. 11 (1962) 415-448 · Zbl 0112.38906
[24] Toupin, R.A., Elastic materials with couple-stresses, Arch. rational mech. anal., 11, 385-414, (1962) · Zbl 0112.16805
[25] Eringen, A.C., Linear theory of micropolar elasticity, J. math. mech., 15, 909-924, (1966) · Zbl 0145.21302
[26] Mühlhaus, H.-B.; Vardoulakis, I., The thickness of shear bands in granular materials, Géotechnique, 37, 3, 271-283, (1987)
[27] Mühlhaus, H.-B., Application of Cosserat theory in numerical solution of limit load problems, Ingenieur-arch., 59, 124-137, (1989)
[28] de Borst, R., Simulation of strain localization: a reappraisal of Cosserat continuum, Engrg. comp., 8, 317-332, (1991)
[29] Steinmann, P.; Willam, K., Localization within the framework of micropolar elastoplasticity, (), 296-313
[30] Steinmann, P., A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity, Int. J. solids struct., 31, 8, 1063-1084, (1994) · Zbl 0945.74523
[31] Ehlers, W.; Volk, W., On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations, Mech. cohes.-frict. mater., 2, 301-320, (1997)
[32] Ehlers, W.; Volk, W., On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials, Int. J. solids struct., 35, 4597-4617, (1998) · Zbl 0930.74013
[33] Toupin, R.A., Theories of elasticity with couple-stress, Arch. rational mech. anal., 17, 85-112, (1964) · Zbl 0131.22001
[34] Mindlin, R.D., Micro-structure in linear elasticity, Arch. rational mech. anal., 16, 51-78, (1964) · Zbl 0119.40302
[35] Eringen, A.C., Mechanics of micromorphic continua, (), 18-35 · Zbl 0181.53802
[36] E. Kröner, Mechanics of generalized continua, Iutam Symposium, Freudenstadt and Stuttgart, Springer, Berlin, 1968, pp. 18-35
[37] Mariano, P.M., Multifield theories in mechanics of solids, Advances in applied mechanics, vol. 38, (2002), Academic Press, pp. 1-93
[38] Vardoulakis, I.; Sulem, J., Bifurcation analysis in geomechanics, (1995), Blackie Academic & Professional Glasgow · Zbl 0900.73645
[39] Capriz, G., Continua with microstructure, (1989), Springer Berlin · Zbl 0676.73001
[40] Halphen, B.; Nguyen, Q.S., Sur LES matériaux standard généralizés, J. Mécan., 14, 39-63, (1975)
[41] Germain, P.; Nguyen, Q.S.; Suquet, P., Continuum thermodynamics, J. appl. mech., ASME, 50, 1010-1020, (1983) · Zbl 0536.73004
[42] Forest, S.; Sievert, R., Elastoviscoplastic constitutive frameworks for generalized continua, Acta mech., 160, 71-111, (2003) · Zbl 1064.74009
[43] Mindlin, R.D., Second gradient of strain and surface-tension in linear elasticity, Int. J. solids struct., 1, 417-438, (1965)
[44] Mindlin, R.D.; Eshel, N.N., On first strain-gradient theories in linear elasticity, Int. J. solids struct., 4, 109-124, (1968) · Zbl 0166.20601
[45] Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. premiere partie: théorie du second gradient, J. Mécan., 12, 2, 235-274, (1973) · Zbl 0261.73003
[46] Germain, P., The method of virtual power in continuum mechanics. part 2: microstructure, SIAM J. appl. math., 25, 3, 556-575, (1973) · Zbl 0273.73061
[47] Capriz, G., Continua with latent microstructure, Arch. rational mech. anal., 90, 43-56, (1985) · Zbl 0569.73001
[48] Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity–I. theory, J. mech. phys. solids, 47, 1239-1263, (1999) · Zbl 0982.74013
[49] Huang, Y.; Gao, H.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity–II. analysis, J. mech. phys. solids, 48, 99-128, (2000) · Zbl 0990.74016
[50] Hwang, K.C.; Jiang, H.; Huang, Y.; Gao, H.; Hu, N., A finite deformation theory of strain gradient plasticity, J. mech. phys. solids, 50, 81-99, (2002) · Zbl 1043.74006
[51] Chambon, R.; Caillerie, D.; El Hassan, N., Etude de la localisation unidimensionelle á l’aide d’un modéle de second gradient, C.R. acad. sci., 323, IIb, 231-238, (1996) · Zbl 0919.73020
[52] Chambon, R.; Caillerie, D.; El Hassan, N., One-dimensional localization studied with a second grade model, Eur. J. mech. A/solids, 17, 4, 637-656, (1998) · Zbl 0936.74020
[53] de Borst, R.; Mühlhaus, H.-B., Gradient-dependent plasticity: formulation and algorithmic aspects, Int. J. numer. methods engrg., 35, 521-539, (1992) · Zbl 0768.73019
[54] Olsson, W.A., Theoretical and experimental investigation of compaction bands in porous rocks, J. geophys. res., 104, 7219-7228, (1999)
[55] Klein, E.; Baud, P.; Reuschle, T.; Wong, T.F., Mechanical behaviour and failure mode of bentheim sandstone under triaxial compression, Phys. chem. Earth (A, 26, 1-2, 21-25, (2001)
[56] Calvetti, F.; Combe, G.; Lanier, J., Experimental micromechanical analysis of 2D granular material: relation between structure evolution and loading paths, Mech. cohes.-frict. mater., 2, 121-163, (1973)
[57] Matsushima, T.; Saomoto, H.; Tsubokawa, Y.; Yamada, Y., Grain rotation versus continuum rotation during shear deformation of granular assembly, Soils foundations, 43, 4, 95-106, (2003)
[58] Matsushima, T.; Chambon, R.; Caillerie, D., Second gradient models as a particular case of microstructured models, a large strain finite element analysis, C.R. acad. sci., 328, IIb, 179-186, (2000) · Zbl 1002.74009
[59] Matsushima, T.; Chambon, R.; Caillerie, D., Large strain finite element analysis of a local second gradient model: application to localization, Int. J. numer. methods engrg., 54, 499-521, (2002) · Zbl 1098.74705
[60] Acharya, A.; Shawki, T.G., Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior, J. mech. phys. solids, 43, 11, 1751-1777, (1984) · Zbl 0876.73023
[61] Hutchinson, J.W., Plasticity at the micron scale, Int. J. solids struct., 37, 225-238, (2000) · Zbl 1075.74022
[62] Aifantis, E.C., On the microstructural origin of certain inelastic models, J. engrg. mater. technol., ASME, 106, 326-330, (1984)
[63] Zbib, H.M.; Aifantis, E.C., On the localization and post localization of plastic deformations. part I: on the initiation of shear bands, Res. mech., 23, 261-277, (1988) · Zbl 0667.73031
[64] Zbib, H.M.; Aifantis, E.C., On the localization and post localization of plastic deformations. part II: on the evolution and thickness of shear bands, Res. mech., 23, 279-292, (1988) · Zbl 0667.73032
[65] Zbib, H.M.; Aifantis, E.C., A gradient-dependent flow theory of plasticity: application to metal and soil instabilities, Appl. mech. rev., 42, 11(2), 295-304, (1989) · Zbl 0749.73031
[66] Vardoulakis, I.; Aifantis, E.C., A gradient flow theory of plasticity for granular materials, Acta mech., 87, 197-217, (1991) · Zbl 0735.73026
[67] Mühlhaus, H.-B.; Aifantis, E.C., A variational principle for gradient plasticity, Int. J. solids struct., 28, 7, 845-857, (1991) · Zbl 0749.73029
[68] J. Pamin, Gradient dependent plasticity in numerical simulation of localization phenomena, Ph.D. thesis, Delft University of Technology, 1994
[69] Ramaswamy, S.; Aravas, N., Finite element implementation of gradient plasticity models. part I: gradient-dependent yield functions, Comput. methods appl. mech. engrg., 163, 11-32, (1998) · Zbl 0961.74063
[70] Li, X.; Cescotto, S., Finite element method for gradient plasticity at large strain, Int. J. numer. methods engrg., 39, 619-633, (1996) · Zbl 0846.73064
[71] Chang, C.S.; Gao, J., Second-gradient constitutive theory for granular material with random packing structure, Int. J. solids struct., 16, 2279-2293, (1995) · Zbl 0869.73004
[72] Mühlhaus, H.-B.; Oka, F., Dispersion and wave propagation in discrete and continuous models for granular materials, Int. J. solids struct., 33, 2841-2858, (1996) · Zbl 0926.74052
[73] Suiker, A.S.J.; de Borst, R.; Chang, C.S., Micro-mechanical modelling of granular material. part 1: derivation of a second-gradient micro-polar constitutive theory, Acta mech., 149, 161-180, (2001) · Zbl 1135.74307
[74] Suiker, A.S.J.; de Borst, R.; Chang, C.S., Micro-mechanical modelling of granular material. part 2: plane wave propagation in infinite media, Acta mech., 149, 181-200, (2001) · Zbl 1135.74307
[75] Maugin, G.A., The method of virtual power in continuum mechanics: application to coupled fields, Acta mech., 25, 1-70, (1980) · Zbl 0428.73095
[76] Lubliner, J., A maximum-dissipation principle in generalized plasticity, Acta mech., 52, 225-237, (1984) · Zbl 0572.73043
[77] Simo, J.C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. methods appl. mech. engrg., 99, 61-112, (1992) · Zbl 0764.73089
[78] Ibrahimbegovic, A., Equivalent spatial and material descriptions of finite deformation elastoplasticity in principal axes, Int. J. solids struct., 31, 22, 3027-3040, (1994) · Zbl 0944.74522
[79] Simo, J.C.; Hughes, T.J.R., Computational inelasticity interdisciplinary, applied mathematics, (1997), Springer Berlin · Zbl 0934.74003
[80] Simo, J.C.; Ciarlet, P.; Lions, J., Numerical analysis and simulation of plasticity, Handbook of numerical analysis, vol. VI, (1998), Elsevier Science
[81] Lee, E.H., Elastic – plastic deformations at finite strain, J. appl. mech., ASME, 36, 1-6, (1969) · Zbl 0179.55603
[82] J. Mandel, Contribution theorique a l’etude de l’ecrouissagement et des lois de l’ecoulement plastique, in: XI Int. Congress on Applied Mechanics, 1964, pp. 502-509
[83] Simo, J.C.; Ortiz, M., A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations, Comput. meth. appl. mech. engrg., 49, 221-245, (1985) · Zbl 0566.73035
[84] Simo, J.C., On the computational significance of the intermediate configuration and hyperelastic relations in finite deformation elastoplasticity, Mech. mater., 4, 439-451, (1986)
[85] Asaro, R.J.; Rice, J.R., Strain localization in ductile single crystals, J. mech. phys. solids, 25, 309-338, (1977) · Zbl 0375.73097
[86] Asaro, R.J., Geometrical effects in the inhomogeneous deformations of ductile single crystals, Acta metall., 27, 445-453, (1979)
[87] Asaro, R.J.; Hutchinson, J.W.; Wu, T.Y., Micromechanics of crystals and polycrystals, Advances in applied mechanics, vol. 23, (1983), Academic Press
[88] Simo, J.C.; Marsden, J.E., On the rotated stress tensor and the material version of the doyle – ericksen formula, Arch. rational mech. anal., 86, 213-231, (1984) · Zbl 0567.73003
[89] Leroy, Y.M.; Molinari, A., Spatial patterns and size effects in shear zones: a hyperelastic model with higher order gradients, J. mech. phys. solids, 41, 4, 631-663, (1993) · Zbl 0783.73017
[90] Hill, R., The mathematical theory of plasticity, (1950), Oxford University Press · Zbl 0041.10802
[91] Luenberger, D.G., Linear and nonlinear programming, (1984), Addison-Wesley Menlo Park · Zbl 0241.90052
[92] Borja, R.I.; Tamagnini, C., Cam – clay plasticity. part III. extension of the infinitesimal model to include finite strains, Comput. meth. appl. mech. engrg., 155, 73-95, (1998) · Zbl 0959.74010
[93] Smyshlyaev, V.P.; Fleck, N.A., The role of strain gradients in the grain size effects for polycrystals, J. mech. phys. solids, 44, 465-495, (1996) · Zbl 1054.74553
[94] Zervos, A.; Papanastasiou, P.; Vardoulakis, I., A finite element displacement formulation for gradient elastoplasticity, Int. J. numer. methods engrg., 50, 1369-1388, (2001) · Zbl 1047.74073
[95] Chambon, R.; Moullet, J.-C., Uniqueness studies in boundary value problems involving some second gradient models, Comput. methods appl. mech. engrg., 193, 2771-2796, (2004) · Zbl 1067.74524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.