Advanced model for the calculation of meshing forces in spur gear planetary transmissions. (English) Zbl 1329.74200

Summary: This paper presents a planar spur gear planetary transmission model, describing in great detail aspects such as the geometric definition of geometric overlaps and the contact forces calculation, thus facilitating the reproducibility of results by fellow researchers. The planetary model is based on a mesh model already used by the authors in the study of external gear ordinary transmissions. The model has been improved and extended to allow for the internal meshing simulation, taking into consideration three possible contact scenarios: involute-involute contact, and two types of involute-tip rounding arc contact. The 6 degrees of freedom system solved for a single couple of gears has been expanded to 6 + 3n degrees of freedom for a planetary transmission with n planets. Furthermore, the coupling of deformations through the gear bodies’ flexibility has been also implemented and assessed. A step-by-step integration of the planetary is presented, using two typical configurations, demonstrating the model capability for transmission simulation of a planetary with distinct pressure angles on each mesh. The model is also put to the test with the simulation of the transmission error of a real transmission system, including the effect of different levels of external torque. The model is assessed by means of quasi-static analyses, and the meshing stiffness values are compared with those provided by the literature.


74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI Link


[1] Heng A, Zhang S, Tan A, Mathew J (2009) Rotating machinery prognostics: state of the art, challenges and opportunities. Mech Syst Signal Process 23(3):724-739 · doi:10.1016/j.ymssp.2008.06.009
[2] Bartelmus W (2001) Mathematical modelling and computer simulations as an aid to gearbox diagnostics. Mech Syst Signal Process 15(5):855-871 · doi:10.1006/mssp.2001.1411
[3] Ognjanovic M, Ristic M, ivkovic P (2014) Reliability for design of planetary gear drive units. Meccanica 49:829-841 · Zbl 1293.70031 · doi:10.1007/s11012-013-9830-8
[4] Smith JD (1999) Gear noise and vibration. Marcel Dekker Inc., New York
[5] Lin J, Parker RG (1999) Analytical characterization of the unique properties of planetary gear free vibration. ASME J Vib Acoust 121(3):316-321 · doi:10.1115/1.2893982
[6] Kahraman A (1994) Natural modes of planetary gear trains. J Sound Vib 173(1):125-130 · doi:10.1006/jsvi.1994.1222
[7] Guo Y, Parker RG (2010) Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. Eur J Mech A Solids 29(6):1022-1033 · Zbl 1480.74232 · doi:10.1016/j.euromechsol.2010.05.001
[8] Kahraman A (1994) Planetary gear train dynamics. ASME J Mech Des 116(3):713-720 · doi:10.1115/1.2919441
[9] Eritenel T, Parker RG (2009) Modal properties of three-dimensional helical planetary gears. J Sound Vib 325(1-2):397-420 · doi:10.1016/j.jsv.2009.03.002
[10] Özgüven HN, Houser DR (1988) Mathematical models used in gear dynamics—a review. J Sound Vib 121:383-411 · doi:10.1016/S0022-460X(88)80365-1
[11] Oyague F (2009) Gearbox modeling and load simulation of a baseline 750-kW wind turbine using state-of-the-art simulation codes. NREL/TP-500-41160
[12] Seager DL (1975) Conditions for the neutralization of excitation by the teeth in epicyclic gearing. Proc Inst Mech Eng 17(5):293-298
[13] Inalpolat M, Kahraman A (2010) A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors. J Sound Vib 329(4):371-393 · doi:10.1016/j.jsv.2009.09.022
[14] Liu G, Parker RG (2008) Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration. ASME J Mech Des 130(12):121402 · doi:10.1115/1.2976803
[15] Velex P, Flamand L (1996) Dynamic response of planetary trains to mesh parametric excitations. ASME J Mech Des 118(1):7-14 · doi:10.1115/1.2826860
[16] Lin J, Parker RG (2002) Planetary gear parametric instability caused by mesh stiffness variation. J Sound Vib 249(1):129-145 · doi:10.1006/jsvi.2001.3848
[17] Parker RG, Agashe V, Vijayakar SM (2000) Dynamic response of a planetary gear system using a finite element/contact mechanics model. ASME J Mech Des 122(3):304-310 · doi:10.1115/1.1286189
[18] Abousleiman V, Velex P, Becquerelle S (2007) Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers. ASME J Mech Des 129(1):95-106 · doi:10.1115/1.2359468
[19] Mucchi E, D’Elia G, Dalpiaz G (2012) Simulation of the running in process in external gear pumps and experimental verification. Meccanica 47:621-637 · Zbl 1293.70041 · doi:10.1007/s11012-011-9470-9
[20] Fernandez del Rincon A, Viadero F, Iglesias M, Garcia P, de-Juan A, Sancibrian R (2013) A model for the study of meshing stiffness in spur gear transmissions. Mech Mach Theory 61:30-58
[21] Fernandez A, Iglesias M, de-Juan A, Garcia P, Sancibrian R, Viadero F (2014) Gear transmission dynamic: effects of tooth profile deviations and support flexibility. Appl Acoust 77:138-149 · doi:10.1016/j.apacoust.2013.05.014
[22] Mucchi E, Dalpiaz G, Rivola A (2010) Elastodynamics analysis of a gear pump: Part II meshing phenomena and simulation results. Mech Syst Signal Process 24:2180-2197 · doi:10.1016/j.ymssp.2010.02.004
[23] Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, United Kingdom ISBN 0-521-81517-7 · Zbl 1079.70507 · doi:10.1017/CBO9780511547126
[24] Vedmar L (1981) On the design of external involute helical gears, transactions of machine elements division. Lund Technical University, Lund
[25] Andersson A, Vedmar L (2003) A dynamic model to determine vibrations in involute helical gears. J Sound Vib 260(2):195-212 · doi:10.1016/S0022-460X(02)00920-3
[26] Vijayakar S (1991) A combined surface integral and finite element solution for a three-dimensional contact problem. Int J Numer Methods Eng 31:525-545 · Zbl 0825.73794 · doi:10.1002/nme.1620310308
[27] Pedersen Niels L, Jrgensen Martin L (2014) On gear tooth stiffness evaluation. Comput Struct 135:109-117 · doi:10.1016/j.compstruc.2014.01.023
[28] Ma H, Song R, Pang X, Wen B (2014) Time-varying mesh stiffness calculation of cracked spur gears. Eng Fail Anal 44:179-194 · doi:10.1016/j.engfailanal.2014.05.018
[29] He S, Gunda R, Singh R (2007) Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. J Sound Vib 301:927-949 · doi:10.1016/j.jsv.2006.10.043
[30] Ambarisha VK, Parker Robert G (2007) Nonlinear dynamics of planetary gears using analytical and finite element models. J Sound Vib 302:577-595 · doi:10.1016/j.jsv.2006.11.028
[31] Kiekbusch T, Sappok D, Sauer B, Howard I (2011) Calculation of the combined torsional mesh stiffness of spur gears with two- and three-dimensional parametrical FE models. J Mech Eng 57:810-818 · doi:10.5545/sv-jme.2010.248
[32] Howard I, Jia S, Wang J (2001) The dynamic modelling of a spur gear in mesh including friction and a crack. Mech Syst Signal Process 15(5):831-853 · doi:10.1006/mssp.2001.1414
[33] Wang J, Howard IM (2006) Error analysis on finite element modeling of involute spur gears. J Mech Des Trans ASME 128(1):90-97 · doi:10.1115/1.2114891
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.