Morier-Genoud, Sophie Coxeter’s frieze patterns at the crossroads of algebra, geometry and combinatorics. (English) Zbl 1330.05035 Bull. Lond. Math. Soc. 47, No. 6, 895-938 (2015). From the author’s introduction: The present article aims to give an overview of the different approaches and recent results about the notion of friezes. The article is organized in four large independent sections and a short conclusion. In Section 1, we review the original work of Coxeter on frieze patterns [H. S. M. Coxeter, Acta Arith. 18, 297–310 (1971; Zbl 0217.18101)], and discuss some immediate extensions of the results, concerning algebraic properties of friezes and links to projective geometry. In Section 2, we present a generalization of friezes based on representations of quivers and the theory of cluster algebras, introduced in [I. Assem et al., Adv. Math. 225, No. 6, 3134–3165 (2010; Zbl 1275.13017)] and [P. Caldero and F. Chapoton, Comment. Math. Helv. 81, No. 3, 595–616 (2006; Zbl 1119.16013)]. In Section 3, we present the variants of \(\mathrm{SL}_k\)-tilings and \(\mathrm{SL}_k\)-friezes introduced in [F. Bergeron and C. Reutenauer, Ill. J. Math. 54, No. 1, 263–300 (2010; Zbl 1236.13018)]. We review results from [S. Morier-Genoud et al., Forum Math. Sigma 2, Article ID e22, 45 p. (2014; Zbl 1297.39004)], where the space of \(\mathrm{SL}_k\)-friezes is identified with the moduli space of projective polygons and the space of superperiodic difference equations. Section 4 focuses on friezes of positive integers and their relations with different combinatorial models. In particular, we give the Conway-Coxeter correspondence with triangulations of polygons [J. H. Conway and H. S. M. Coxeter, Math. Gaz. 57, 87–94 (1973; Zbl 0285.05028); Math. Gaz. 57, 175–183 (1973; Zbl 0288.05021)] and present some generalizations. The final section lists the different variants of friezes appearing in the literature and some open questions. Reviewer: Ioan Tomescu (Bucureşti) Cited in 40 Documents MSC: 05B99 Designs and configurations 05E10 Combinatorial aspects of representation theory 13F60 Cluster algebras 14M15 Grassmannians, Schubert varieties, flag manifolds 16G20 Representations of quivers and partially ordered sets 39A70 Difference operators 51M20 Polyhedra and polytopes; regular figures, division of spaces 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics Keywords:Frieze patterns; quiver representations; cluster algebras; projective geometry; superperiodic difference equations; triangulations of polygons; Laurent polynomial; Dynkin quiver; Coxeter number Citations:Zbl 0217.18101; Zbl 1275.13017; Zbl 1119.16013; Zbl 1236.13018; Zbl 1297.39004; Zbl 0285.05028; Zbl 0288.05021 PDFBibTeX XMLCite \textit{S. Morier-Genoud}, Bull. Lond. Math. Soc. 47, No. 6, 895--938 (2015; Zbl 1330.05035) Full Text: DOI arXiv References: [1] R. P.Agarwal, M.Bohner, S. R.Grace, D.O’Regan, Discrete oscillation theory (Hindawi Publishing Corporation, New York, 2005). · Zbl 1084.39001 [2] D.André, ‘Terme général d’une série quelconque déterminée à la façon des séries récurrentes’, Ann. Sci. École Norm. Sup. (2), 7 (1878) 375-408. · JFM 10.0181.02 [3] I.Assem, G.Dupont, ‘Friezes and a construction of the Euclidean cluster variables’, J. Pure Appl. Algebra, 215 (2011) 2322-2340. · Zbl 1317.13049 [4] I.Assem, G.Dupont, ‘Friezes over semirings and tropicalisations’, Preprint, 2013, http://prospero.dmi.usherb.ca/ibrahim/Publications.aspx. [5] I.Assem, G.Dupont, R.Schiffler, D.Smith, ‘Friezes, strings and cluster variables’, Glasg. Math. J., 54 (2012) 27-60. · Zbl 1280.16015 [6] I.Assem, C.Reutenauer, D.Smith, ‘Friezes’, Adv. Math., 225 (2010) 3134-3165. · Zbl 1275.13017 [7] I.Assem, D.Simson, A.Skowroński, ‘Techniques of representation theory’, Elements of the representation theory of associative algebras, vol. 1, London Mathematical Society Student Texts 65 (Cambridge University Press, Cambridge, 2006). · Zbl 1092.16001 [8] M.Auslander, ‘Representation theory of Artin algebras. I, II’, Comm. Algebra, 1 (1974) 177-268; ibid. 1 (1974) 269-310. · Zbl 0285.16028 [9] M.Auslander, I.Reiten, S. O.Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36 (Cambridge University Press, Cambridge, 1995). · Zbl 0834.16001 [10] K.Baur, R. J.Marsh, ‘Frieze patterns for punctured discs’, J. Algebraic Combin., 30 (2009) 349-379. · Zbl 1201.05103 [11] K.Baur, R. J.Marsh, ‘Categorification of a frieze pattern determinant’, J. Combin. Theory Ser. A, 119 (2012) 1110-1122. · Zbl 1239.05031 [12] K.Baur, M. J.Parsons, M.Tschabold, ‘Infinite friezes’, Preprint, 2015, arXiv:1504.02695. · Zbl 1331.05057 [13] V.Bazhanov, N.Reshetikhin, ‘Restricted solid‐on‐solid models connected with simply laced algebras and conformal field theory’, J. Phys. A, 23 (1990) 1477-1492. · Zbl 0712.17024 [14] F.Bergeron, C.Reutenauer, ‘\( S L_k\)‐tilings of the plane’, Illinois J. Math., 54 (2010) 263-300. · Zbl 1236.13018 [15] C.Bessenrodt, ‘Conway-Coxeter friezes and beyond: polynomially weighted walks around dissected polygons and generalized frieze patterns’, Preprint, 2014, arXiv:1412.1726. · Zbl 1320.05021 [16] C.Bessenrodt, T.Holm, P.Jørgensen, ‘All \(\text{SL}_2\)‐tilings come from triangulations’, Research report MFO, 2012. [17] C.Bessenrodt, T.Holm, P.Jørgensen, ‘Generalized frieze pattern determinants and higher angulations of polygons’, J. Combin. Theory Ser. A, 123 (2014) 30-42. · Zbl 1280.05016 [18] D. M.Broline, ‘Frieze patterns as matrix multiplication tables’, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, FL, 1978), Congressus numerantium XXI (Utilitas Mathematica, Winnipeg, Manitoba, 1978) 151-161. · Zbl 0417.15008 [19] D.Broline, D. W.Crowe, I. M.Isaacs, ‘The geometry of frieze patterns’, Geom. Dedicata, 3 (1974) 171-176. · Zbl 0292.05009 [20] A. B.Buan, R.Marsh, M.Reineke, I.Reiten, G.Todorov, ‘Tilting theory and cluster combinatorics’, Adv. Math., 204 (2006) 572-618. · Zbl 1127.16011 [21] J.‐P.Burelle, G.Dupont, ‘Quantum frieze patterns in quantum cluster algebras of type \(A\)’, Int. Electron. J. Algebra, 12 (2012) 103-115. · Zbl 1250.13025 [22] P.Caldero, F.Chapoton, ‘Cluster algebras as Hall algebras of quiver representations’, Comment. Math. Helv., 81 (2006) 595-616. · Zbl 1119.16013 [23] J. H.Conway, H. S. M.Coxeter, ‘Triangulated polygons and frieze patterns’, Math. Gaz., 57 (1973) 87-94, 175-183. · Zbl 0285.05028 [24] C. M.Cordes, D. P.Roselle, ‘Generalized frieze patterns’, Duke Math. J., 39 (1972) 637-648. · Zbl 0258.05024 [25] H. S. M.Coxeter, ‘Frieze patterns’, Acta Arith., 18 (1971) 297-310. · Zbl 0217.18101 [26] H. S. M.Coxeter, J. F.Rigby, ‘Frieze patterns, triangulated polygons and dichromatic symmetry’, The lighter side of mathematics (The Mathematical Association of America, Washington, DC, 1994) 15-27. [27] M.Cuntz, ‘Frieze patterns as root posets and affine triangulations’, Preprint, 2013, arXiv:1307.7986. · Zbl 1342.52025 [28] M.Cuntz, ‘On wild frieze patterns’, Preprint, 2015, arXiv:1504.07048. · Zbl 1367.05207 [29] M.Cuntz, I.Heckenberger, ‘Reflection groupoids of rank two and cluster algebras of type \(A\)’, J. Combin. Theory Ser. A, 118 (2011) 1350-1363. · Zbl 1231.05305 [30] P.Di Francesco, ‘The solution of the \(A_rT\)‐system for arbitrary boundary’, Electron. J. Combin., 17 (2010) 43. Research Paper 89. · Zbl 1230.05153 [31] P.Di Francesco, R.Kedem, ‘Positivity of the \(T\)‐system cluster algebra’, Electron. J. Combin., 16 (2009) 39. Research Paper 140. · Zbl 1229.13019 [32] D.Eisenbud, S.Popescu, ‘The projective geometry of the Gale transform’, J. Algebra, 230 (2000) 127-173. · Zbl 1060.14528 [33] M. K.Essonana, ‘Friezes of type D’, Preprint, 2014, arXiv:1405.0548. [34] S.Fomin, N.Reading, ‘Root systems and generalized associahedra’, Geometric combinatorics, IAS/Park City Mathematics Series 13 (American Mathematical Society, Providence, RI, 2007) 63-131. · Zbl 1147.52005 [35] S.Fomin, A.Zelevinsky, ‘Cluster algebras. I. Foundations’, J. Amer. Math. Soc., 15 (2002) 497-529. · Zbl 1021.16017 [36] S.Fomin, A.Zelevinsky, ‘The Laurent phenomenon’, Adv. Appl. Math., 28 (2002) 119-144. · Zbl 1012.05012 [37] S.Fomin, A.Zelevinsky, ‘Cluster algebras. II. Finite type classification’, Invent. Math., 154 (2003) 63-121. · Zbl 1054.17024 [38] S.Fomin, A.Zelevinsky, ‘\(Y\)‐systems and generalized associahedra’, Ann. of Math. (2), 158 (2003) 977-1018. · Zbl 1057.52003 [39] B.Fontaine, ‘Non‐zero integral friezes’, Preprint, 2014, arXiv:1409.6026. [40] B.Fontaine, P.Pierre‐Guy, ‘Counting friezes in type \(d_n\)’, Preprint, 2014, arXiv:1409.3698. · Zbl 1344.05152 [41] P.Gabriel, ‘Auslander-Reiten sequences and representation‐finite algebras’, Representation theory I (Proc. Workshop Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Mathematics 831 (Springer, Berlin, 1980) 1-71. · Zbl 0445.16023 [42] D.Gale, ‘Neighboring vertices on a convex polyhedron’, Linear inequalities and related system, Annals of Mathematics Studies 38 (Princeton University Press, Princeton, NJ, 1956) 255-263. · Zbl 0072.37805 [43] M.Gekhtman, M.Shapiro, A.Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167 (American Mathematical Society, Providence. RI, 2010). · Zbl 1217.13001 [44] I. M.Gel’fand, R. D.MacPherson, ‘Geometry in Grassmannians and a generalization of the dilogarithm’, Adv. Math., 44 (1982) 279-312. · Zbl 0504.57021 [45] J. E.Grabowski, ‘Graded cluster algebras’, Preprint, 2013, arXiv:1309.6170. [46] L.Guo, ‘On tropical friezes associated with Dynkin diagrams’, Int. Math. Res. Not., 18 (2013) 4243-4284. · Zbl 1312.18006 [47] T.Holm, P.Jørgensen, ‘\( \text{SL}_2\)‐tilings and triangulations of the strip’, J. Combin. Theory Ser. A, 120 (2013) 1817-1834. · Zbl 1317.05186 [48] T.Holm, P.Jørgensen, ‘Generalised friezes and a modified Caldero-Chapoton map depending on a rigid object’, Nagoya Math. J. 218 (2015) 101-124. · Zbl 1314.05221 [49] T.Holm, P.Jørgensen, ‘Generalised friezes and a modified Caldero-Chapoton map depending on a rigid object II’, Bull. Sci. Math., doi:10.1016/j.bulsci.2015.05.001. · Zbl 1335.05196 [50] C.Jordan, Calculus of finite differences (Hungarian Agent Eggenberger Book‐Shop, Budapest, 1939). · Zbl 0060.12309 [51] R.Kedem, P.Vichitkunakorn, ‘\(T\)‐systems and the pentagram map’, J. Geom. Phys., 87 (2015) 233-247. · Zbl 1306.37062 [52] B.Keller, ‘Cluster algebras, quiver representations and triangulated categories’, Triangulated categories, London Mathematical Society Lecture Note Series 375 (Cambridge University Press, Cambridge, 2010) 76-160. · Zbl 1215.16012 [53] B.Keller, ‘The periodicity conjecture for pairs of Dynkin diagrams’, Ann. of Math. (2), 177 (2013) 111-170. · Zbl 1320.17007 [54] B.Keller, S.Scherotzke, ‘Linear recurrence relations for cluster variables of affine quivers’, Adv. Math., 228 (2011) 1842-1862. · Zbl 1252.16012 [55] Y.Kimura, F.Qin, ‘Graded quiver varieties, quantum cluster algebras and dual canonical basis’, Adv. Math., 262 (2014) 261-312. · Zbl 1331.13016 [56] I.Krichever, ‘Commuting difference operators and the combinatorial Gale transform’, Preprint, 2014, arXiv:1403.4629. · Zbl 1331.47052 [57] A.Kuniba, T.Nakanishi, J.Suzuki, ‘Functional relations in solvable lattice models. I. Functional relations and representation theory’, Internat. J. Modern Phys. A, 9 (1994) 5215-5266. · Zbl 0985.82501 [58] A.Laurent, ‘Frises. Rapport de stage’, 2014, http://webusers.imj‐prg.fr/ sophie.morier‐genoud/papers.html. [59] K.Lee, R.Schiffler, ‘Positivity for cluster algebras’, Preprint, 2013, arXiv:1306.2415. · Zbl 1300.13016 [60] J.‐F.Marceau, ‘Pavages additifs’, Preprint, 2012, arXiv:1205.5213. [61] R. J.Marsh, Lecture notes on cluster algebras, Zurich Lectures in Advanced Mathematics (European Mathematical Society, Zürich, 2013). · Zbl 1310.13002 [62] S.Morier‐Genoud, ‘Arithmetics of 2‐friezes’, J. Algebraic Combin., 36 (2012) 515-539. · Zbl 1259.05191 [63] S.Morier‐Genoud, V.Ovsienko, R.Schwartz, S.Tabachnikov, ‘Linear difference equations, frieze patterns, and the combinatorial Gale transform’, Forum Math. Sigma, 2 (2014) e22, 45 pp. · Zbl 1297.39004 [64] S.Morier‐Genoud, V.Ovsienko, S.Tabachnikov, ‘2‐frieze patterns and the cluster structure of the space of polygons’, Ann. Inst. Fourier (Grenoble), 62 (2012) 937-987. · Zbl 1290.13014 [65] S.Morier‐Genoud, V.Ovsienko, S.Tabachnikov, \( \text{SL}_2 ( \mathbb{Z} )\)‐tilings of the torus, Coxeter-Conway friezes and Farey triangulations’, Enseign. Math., Preprint, 2014, arXiv:1402.5536. · Zbl 1331.05022 [66] S.Morier‐Genoud, V.Ovsienko, S.Tabachnikov, ‘Introducing supersymmetric frieze patterns and linear difference operators’, Preprint, 2015, arXiv:1501.07476. · Zbl 1350.14038 [67] T.Muir, A treatise on the theory of determinants, Revised and enlarged by William H. Metzler (Dover Publications, New York, 1960). [68] V.Ovsienko, R.Schwartz, S.Tabachnikov, ‘The pentagram map: a discrete integrable system’, Comm. Math. Phys., 299 (2010) 409-446. · Zbl 1209.37063 [69] V.Ovsienko, S.Tabachnikov, ‘From the Schwarzian derivative to the cohomology of diffeomorphism groups’, Projective differential geometry old and new, Cambridge Tracts in Mathematics 165 (Cambridge University Press, Cambridge, 2005). · Zbl 1073.53001 [70] V.Ovsienko, S.Tabachnikov, ‘Coxeter’s frieze patterns and discretization of the Virasoro orbit’, J. Geom. Phys., 87 (2015) 373-381. · Zbl 1339.58002 [71] O.Pechenik, ‘Cyclic sieving of increasing tableaux and small Schröder paths’, J. Combin. Theory Ser. A, 125 (2014) 357-378. · Zbl 1295.05265 [72] J.Propp, ‘The combinatorics of frieze patterns and Markoff numbers’, Preprint, 2005, arXiv:math/0511633. [73] I.Reiten, ‘Cluster categories’, Proceedings of the International Congress of Mathematicians, Volume I (Hindustan Book Agency, New Delhi, 2010) 558-594. · Zbl 1264.16017 [74] C.Reutenauer, ‘Linearly recursive sequences and Dynkin diagrams’, Preprint, 2012, arXiv:1204.5145. · Zbl 1408.11008 [75] C.Riedtmann, ‘Algebren, Darstellungsköcher, Überlagerungen und zurück’, Comment. Math. Helv., 55 (1980) 199-224. · Zbl 0444.16018 [76] C. M.Ringel, ‘Cluster‐additive functions on stable translation quivers’, J. Algebraic Combin., 36 (2012) 475-500. · Zbl 1284.16016 [77] R.Schiffler, Quiver representations, CMS Books in Mathematics (Springer, Berlin, 2014). · Zbl 1310.16015 [78] R. E.Schwartz, http://www.math.brown.edu/res/Java/Frieze/Main.html. [79] J. S.Scott, ‘Grassmannians and cluster algebras’, Proc. London Math. Soc., 92 (2006) 345-380. · Zbl 1088.22009 [80] L. W.Shapiro, ‘Positive definite matrices and Catalan numbers, revisited’, Proc. Amer. Math. Soc., 90 (1984) 488-496. · Zbl 0537.05002 [81] G. C.Shephard, ‘Additive frieze patterns and multiplication tables’, Math. Gaz., 60 (1976) 178-184. · Zbl 0344.05008 [82] M.Tschabold, ‘Arithmetic infinite friezes from punctured discs’, Preprint, 2015, arXiv:1503.04352. [83] A. Yu.Volkov, ‘On the periodicity conjecture for \(Y\)‐systems’, Comm. Math. Phys., 276 (2007) 509-517. · Zbl 1136.82011 [84] Z.Yao, ‘Glick’s conjecture on the point of collapse of axis‐aligned polygons under the pentagram maps’, Preprint, 2014, arXiv:1410.7806. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.