×

zbMATH — the first resource for mathematics

Seshadri constants and interpolation on commutative algebraic groups. (Constantes de Seshadri et interpolation dans les groupes algèbriques commutatifs.) (English. French summary) Zbl 1330.14076
Interpolation estimates occur in transcendence methods as a tool for giving upper bounds for the degree of polynomials taking given values (which can involve multiplicities) at a finite number of points. They provide estimates, related to auxiliary analytic functionals, which can be compared with zero or multiplicity estimates. Zero (and multiplicity) estimates are related to auxiliary analytic functions and provide lower bounds for the degree of polynomials vanishing (with multiplicities) at a finite number of points. While the theory of zero estimates and multiplicity estimates on algebraic groups has reached a satisfactory level, only few interpolation estimates were known so far: D. W. Masser [Prog. Math. 31, 151–171 (1983; Zbl 0579.14038)], S. Fischler [Compos. Math. 141, No. 4, 907–925 (2005; Zbl 1080.14054)].
In the present paper, the authors develop the theory of interpolation estimates on a commutative algebraic group endowed with the Serre compactification and reach the same level of accuracy as the theory of multiplicity estimates. They relate the algebraic subgroups responsible for a possible defect in the interpolation estimate to a Seshadri exceptional subvariety, in a way similar to what was done for multiplicity estimates [M. Nakamaye and N. Ratazzi, Math. Z. 259, No. 4, 915–933 (2008; Zbl 1156.11027)]. This paper contains results which have their own independent interest related with Seshadri’s constant and Seshadri’s exceptional varieties.

MSC:
14L10 Group varieties
14C20 Divisors, linear systems, invertible sheaves
11J95 Results involving abelian varieties
14L40 Other algebraic groups (geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkenhake, Christina; Lange, Herbert, Complex abelian varieties, 302, xii+635 pp., (2004), Springer-Verlag, Berlin · Zbl 1056.14063
[2] Campana, Frédéric; Peternell, Thomas, Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math., 407, 160-166, (1990) · Zbl 0728.14004
[3] Ein, Lawrence; Küchle, Oliver; Lazarsfeld, Robert, Local positivity of ample line bundles, J. Differential Geom., 42, 2, 193-219, (1995) · Zbl 0866.14004
[4] Fischler, S., Interpolation on algebraic groups, Compos. Math., 141, 4, 907-925, (2005) · Zbl 1080.14054
[5] Fischler, S.; Nakamaye, M., Connecting interpolation and multiplicity estimates in commutative algebraic groups · Zbl 1347.11054
[6] Fulton, William, Intersection theory, 2, xiv+470 pp., (1998), Springer-Verlag, Berlin · Zbl 0885.14002
[7] Hartshorne, Robin, Algebraic geometry, xvi+496 pp., (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[8] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji, Algebraic geometry, Sendai, 1985, 10, Introduction to the minimal model problem, 283-360, (1987), North-Holland, Amsterdam · Zbl 0672.14006
[9] Knop, F.; Lange, H., Some remarks on compactifications of commutative algebraic groups, Comment. Math. Helv., 60, 4, 497-507, (1985) · Zbl 0587.14030
[10] Lazarsfeld, Robert, Positivity in algebraic geometry. I and II, 48, 49, xviii+387, xviii+385 pp., (2004), Springer-Verlag, Berlin · Zbl 1093.14500
[11] Masser, D. W., Approximations diophantiennes et nombres transcendants (Luminy, 1982), 31, Interpolation on group varieties, 151-171, (1983), Birkhäuser, Boston, Mass. · Zbl 0579.14038
[12] Masser, D. W.; Wüstholz, G., Zero estimates on group varieties. I, Invent. Math., 64, 3, 489-516, (1981) · Zbl 0467.10025
[13] Mumford, David, Abelian varieties, viii+242 pp., (1970), Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London · Zbl 0223.14022
[14] Nakamaye, Michael, Multiplicity estimates and the product theorem, Bull. Soc. Math. France, 123, 2, 155-188, (1995) · Zbl 0841.11037
[15] Nakamaye, Michael, Seshadri constants at very general points, Trans. Amer. Math. Soc., 357, 8, 3285-3297, (2005) · Zbl 1084.14008
[16] Nakamaye, Michael, Multiplicity estimates on commutative algebraic groups, J. Reine Angew. Math., 607, 217-235, (2007) · Zbl 1162.11037
[17] Nakamaye, Michael, Number theory, analysis and geometry: In Memory of Serge Lang, D. Goldfeld et al. (ed), Multiplicity estimates, interpolation, and transcendence theory, 475-498, (2012), Springer, New York · Zbl 1268.11097
[18] Nakamaye, Michael; Ratazzi, Nicolas, Lemmes de multiplicités et constante de Seshadri, Math. Z., 259, 4, 915-933, (2008) · Zbl 1156.11027
[19] Philippon, Patrice, Lemmes de zéros dans LES groupes algébriques commutatifs, Bull. Soc. Math. France, 114, 3, 355-383, (1986) · Zbl 0617.14001
[20] Serre, J.-P., Quelques propriétés des groupes algébriques commutatifs, Astérisque, 69-70, 191-202, (1978)
[21] Waldschmidt, M., Approximations diophantiennes et nombres transcendants (Luminy, 1982), 31, Dépendance de logarithmes dans LES groupes algébriques, 289-328, (1983), Birkhäuser, Boston, Mass. · Zbl 0513.14028
[22] Waldschmidt, Michel, La transformation de Fourier-borel : une dualité en transcendance
[23] Waldschmidt, Michel, Fonctions auxiliaires et fonctionnelles analytiques. I, II, J. Analyse Math., 56, 231-254, 255-279, (1991) · Zbl 0742.11036
[24] Waldschmidt, Michel, Diophantine approximation on linear algebraic groups, 326, xxiv+633 pp., (2000), Springer-Verlag, Berlin · Zbl 0944.11024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.