×

Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. (English) Zbl 1330.37027


MSC:

37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, I , Ann. of Math. (2) 86 (1967), 374–407. JSTOR: · Zbl 0161.43201
[2] –. –. –. –., A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. (2) 88 (1968), 451–491. JSTOR: · Zbl 0167.21703
[3] –. –. –. –., “Notes on the Lefschetz fixed point formula for elliptic complexes” in Raoul Bott: Collected Papers, Vol. 2: Differential Operators , Contemp. Mathematicians, Birkhäuser, Boston, 1994, 68–162.
[4] M. Baillif and V. Baladi, Kneading determinants and spectra of transfer operators in higher dimensions, the isotropic case , · Zbl 1085.37015
[5] V. Baladi, Infinite kneading matrices and weighted zeta functions of interval maps , J. Funct. Anal. 128 (1995), 226–244. · Zbl 0824.58038
[6] –. –. –. –., Periodic orbits and dynamical spectra , Ergodic Theory Dynam. Systems 18 (1998), 255–292. · Zbl 0915.58088
[7] ——–, Positive Transfer Operators and Decay of Correlations , Adv. Ser. Nonlinear Dynam. 16 , World Sci., River Edge, N.J., 2000. · Zbl 1012.37015
[8] V. Baladi, A. Kitaev, D. Ruelle, and S. Semmes, Sharp determinants and kneading operators for holomorphic maps , Proc. Steklov Inst. Math. 216 , no. 1 (1997), 186–228. · Zbl 0919.58008
[9] V. Baladi and D. Ruelle, An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps, Ergodic Theory Dynam. Systems 14 (1994), 621–632. · Zbl 0818.58013
[10] –. –. –. –., Sharp determinants , Invent. Math. 123 (1996), 553–574.
[11] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and Determinants of Linear Operators , Oper. Theory Adv. Appl. 116 , Birkhäuser, Basel, 2000. · Zbl 0946.47013
[12] S. Gouëzel, Spectre de l’opérateur de transfert en dimension \(1\) , Manuscripta Math. 106 (2001), 365–403. · Zbl 1048.37019
[13] V. Guillemin and S. Sternberg, Geometric Asymptotics , Math. Surveys 14 , Amer. Math. Soc., Providence, 1977. · Zbl 0364.53011
[14] G. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds , Monogr. Math. 79 , Birkhäuser, Basel, 1984. · Zbl 0573.32001
[15] L. Hörmander, “Spectral analysis of singularities” in Seminar on Singularities of Solutions of Linear Partial Differential Equations (Princeton, 1977/78) , ed. L. Hörmander, Ann. Math. Stud. 91 , Princeton Univ. Press, Princeton, 1979.
[16] V. Yu. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits , Comm. Math. Phys. 211 (2000), 253–271. · Zbl 0956.37017
[17] A. Kitaev, Kneading operators in higher dimensions , private communication, June 1995.
[18] J. Milnor and W. Thurston, “On iterated maps of the interval” in Dynamical Systems (College Park, Md., 1986–87.) , ed. J. C. Alexander, Lecture Notes in Math. 1342 , Springer, Berlin, 1988. · Zbl 0664.58015
[19] D. Ruelle, “Sharp zeta functions for smooth interval maps” in International Conference on Dynamical Systems: A Tribute to Ricardo Mañé (Montevideo, Uruguay, 1995) , ed. F. Ledrappier, J. Lewowicz, and S. Newhouse, Pitman Res. Notes Math. Ser. 362 , Longman, Harlow, England, 1996, 188–206. · Zbl 0924.58016
[20] ——–, Functional determinants related to dynamical systems and the thermodynamic formalism , Fermi lectures, Scuola Norm. Sup., Pisa, preprint, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1995.
[21] L. Schwartz, Théorie des distributions , new ed., Publ. Inst. Math. Univ. Strasbourg 9 – 10 , Hermann, Paris, 1966.
[22] B. Simon, Trace Ideals and Their Applications , London Math. Soc. Lecture Note Ser. 35 , Cambridge Univ. Press, Cambridge, 1979. · Zbl 0423.47001
[23] M. Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus , Adv. Ser. Nonlinear Dynam., Benjamin, New York, 1965. · Zbl 0141.05403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.