×

Adjoint variables and intertemporal prices in infinite-horizon optimal control problems. (English. Russian original) Zbl 1330.49017

Proc. Steklov Inst. Math. 290, 223-237 (2015); translation from Tr. Mat. Inst. Steklova 290, 239-253 (2015).
Summary: The properties of adjoint variables involved in the relations of the Pontryagin maximum principle are investigated for a class of infinite-horizon optimal control problems that arise in the study of economic growth processes. New formulations of the maximum principle in terms of intertemporal prices and the conditional value of the capital are established. Several illustrative examples are considered.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
91B62 Economic growth models
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. Acemoglu, Introduction to Modern Economic Growth (Princeton Univ. Press, Princeton, NJ, 2008). · Zbl 1158.91001
[2] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control (Nauka, Moscow, 1979; Consultants Bureau, New York, 1987). · Zbl 0516.49002
[3] S. M, A., On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk, 19, 15-24, (2013)
[4] S. M, A., No article title, Proc. Steklov Inst. Math., 287, s11-s21, (2014) · Zbl 1333.49036
[5] S. M, A.; K. O, B.; A. V, K., Infinite-horizon optimal control problems in economics, Usp. Mat. Nauk, 67, 3-64, (2012)
[6] S. M, A.; K. O, B.; A. V, K., No article title, Russ. Math. Surv., 67, 195-253, (2012) · Zbl 1248.49023
[7] S. M, A.; A. V, K., The Pontryagin maximum principle for an optimal control problem with a functional specified by an improper integral, Dokl. Akad. Nauk, 394, 583-585, (2004)
[8] S. M, A.; A. V, K., No article title, Dokl. Math., 69, 89-91, (2004) · Zbl 1122.49017
[9] S. M, A.; A. V, K., The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons, SIAM J. Control Optim., 43, 1094-1119, (2004) · Zbl 1072.49015
[10] S. M. Aseev and A. V. Kryazhimskii, The Pontryagin Maximum Principle and Optimal Economic Growth Problems (Nauka, Moscow, 2007), Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 257 · Zbl 1215.49001
[11] S. M. Aseev, Proc. Steklov Inst. Math. 257 (2007)].
[12] S. M, A.; V. M, V., Maximum principle for infinite-horizon optimal control problems with dominating discount, Dyn. Contin. Discrete Impuls. Syst. B: Appl. Algorithms, 19, 43-63, (2012) · Zbl 1266.49003
[13] S. M, A.; V. M, V.; G, W. (ed.); A. J, Z. (ed.), Needle variations in infinite-horizon optimal control, (2014), Providence, RI · Zbl 1329.49005
[14] S. M. Aseev Contemp. Math. 619, pp. 1-17.
[15] S. M, A.; V. M, V., Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk, 20, 41-57, (2014)
[16] R. J. Barro and X. Sala-i-Martin, Economic Growth (McGraw Hill, New York, 1995).
[17] R. Bellman, Dynamic Programming (Princeton Univ. Press, Princeton, NJ, 1957). · Zbl 0077.13605
[18] L. M, B.; J. A, S., Duality theory for dynamic optimization models of economics: the continuous time case, J. Econ. Theory, 27, 1-19, (1982) · Zbl 0503.90023
[19] K. O, B., On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function, Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, 284, 56-88, (2014)
[20] K. O, B., No article title, Proc. Steklov Inst. Math., 284, 50-80, (2014) · Zbl 1310.91101
[21] D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Determenistic and Stochastic Systems (Springer, Berlin, 1991). · Zbl 0758.49001
[22] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control (Springer, London, 2013), Grad. Texts Math. 264. · Zbl 1277.49001
[23] R, D., An economic interpretation of optimal control theory, Am. Econ. Rev., 59, 817-831, (1969)
[24] H, H., Necessary conditions for optimal control problems with infinite horizons, Econometrica, 42, 267-272, (1974) · Zbl 0301.90009
[25] P. Hartman, Ordinary Differential Equations (J. Wiley & Sons, New York, 1964). · Zbl 0125.32102
[26] H, H., The economics of exhaustible resources, J. Polit. Econ., 39, 137-175, (1931) · JFM 57.1496.07
[27] S, L.; H.J, S. (ed.), Invariance of extremals, (1990), New York
[28] S. Lojasiewicz, Pure Appl. Math. 133, pp. 237-261.
[29] P, M., On the transversality condition in infinite horizon optimal problems, Econometrica, 50, 975-985, (1982) · Zbl 0483.90026
[30] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964). · Zbl 0117.31702
[31] N, S., Value functions and transversality conditions for infinite-horizon optimal control problems, Set- Valued Var. Anal., 18, 1-28, (2010) · Zbl 1207.37021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.