Oprea, John Applications of Lusternik-Schnirelmann category and its generalizations. (English) Zbl 1330.55002 J. Geom. Symmetry Phys. 36, 59-97 (2014). The author describes diverse applications of the category of a topological space (in the sense of Lusternik and Schnirelmann) to various areas of mathematics. For example: Brouwer fixed point theorem, Morse theory, Symplectic geometry, Nonnegative Ricci curvature, Smale topological complexity, etc. Reviewer: Jean Claude Thomas (Angers) MSC: 55-02 Research exposition (monographs, survey articles) pertaining to algebraic topology 55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects) 55P62 Rational homotopy theory 55P50 String topology Keywords:Lusternik-Schnirelmann category; fixed point theorem; topological complexity PDF BibTeX XML Cite \textit{J. Oprea}, J. Geom. Symmetry Phys. 36, 59--97 (2014; Zbl 1330.55002) OpenURL