×

On the rate of convergence for critical crossing probabilities. (English. French summary) Zbl 1330.82025

Starting with [S. Smirnov, C. R. Acad. Sci., Paris, Sér. I, Math. 333, No. 3, 239–244 (2001; Zbl 0985.60090)] and continuing up to [W. Werner, in: Statistical mechanics. Papers based on the presentations at the IAS/PCMI summer conference, Park City, UT, USA, July 1–21, 2007. Providence, RI: American Mathematical Society (AMS); Princeton, NJ: Institute for Advanced Study. 297–358 (2009; Zbl 1180.82003)], the validity of Cardy’s formula, which describes the limit of crosssing probabilities for certain percolation models (and the subsequent validity of an \(SLE_6\) description for an associated limiting explorer process) has been well established. The mechanism of how Cardy’s formula comes into play has become purely understood. The purpose of the present paper is an investigation of the rate of convergence of crossing probabilities to the Cardy’s formula, viewed as the percolation observable. A power law estimate has been established for the site percolation model on the triangular lattice and certain generalizations, for which Cardy’s formula has been so far established. That holds true for the rate of convergence in any domain with boundary dimension less than two. The procedure invented here is akin to the approach of T. E. Harris [Proc. Camb. Philos. Soc. 56, 13–20 (1960; Zbl 0122.36403)], in his study of the critical state at a time when detailed information about the nature of the state was unavailable.

MSC:

82B43 Percolation
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B27 Critical phenomena in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich and L. Russo. On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92 (1983) 19-69. · Zbl 0529.60099 · doi:10.1007/BF01206313
[2] V. Beffara. Cardy’s Formula on the triangular lattice, the easy way. In Universality and Renormalization 39-45. Fields Institute Communications 50 . Amer. Math. Soc., Providence, RI, 2007. · Zbl 1126.60081
[3] C. Beneš, F. Johansson Viklund and M. J. Kozdron. On the rate of convergence of loop-erased random walk to \(\mathrm{SLE}_{2}\). Comm. Math. Phys. 318 (2013) 307-354. · Zbl 1268.60117 · doi:10.1007/s00220-013-1666-5
[4] I. Binder, L. Chayes and H. K. Lei. On convergence to \(\mathrm{SLE}_{6}\) I: Conformal invariance for certain models of the bond-triangular type. J. Stat. Phys. 141 (2) (2010) 359-390. · Zbl 1203.82051 · doi:10.1007/s10955-010-0052-3
[5] I. Binder, L. Chayes and H. K. Lei. On convergence to \(\mathrm{SLE}_{6}\) II: Discrete approximations and extraction of Cardy’s formula for general domains. J. Stat. Phys. 141 (2) (2010) 391-408. · Zbl 1203.82052 · doi:10.1007/s10955-010-0053-2
[6] F. Camia and C. M. Newman. Critical percolation exploration path and \(\mathrm{SLE}_{6}\): A proof of convergence. Probab. Theory Related Fields 139 (2007) 473-519. · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[7] J. L. Cardy. Critical percolation in finite geometries. J. Phys. A 25 (1992) 201-206. · Zbl 0755.60065 · doi:10.1088/0305-4470/25/10/008
[8] L. Chayes. Discontinuity of the spin-wave stiffness in the two-dimensional \(XY\) model. Comm. Math. Phys. 197 (1998) 623-640. · Zbl 0941.82012 · doi:10.1007/s002200050466
[9] L. Chayes. Mean field analysis of low-dimensional systems. Comm. Math. Phys. 292 (2009) 303-341. · Zbl 1184.82006 · doi:10.1007/s00220-009-0847-8
[10] L. Chayes and H. K. Lei. Cardy’s formula for certain models of the bond-triangular type. Rev. Math. Phys. 19 (5) (2007) 511-565. · Zbl 1152.82009 · doi:10.1142/S0129055X0700305X
[11] T. E. Harris. A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 (1960) 13-20. · Zbl 0122.36403 · doi:10.1017/S0305004100034241
[12] G. F. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114 . Amer. Math. Soc., Providence, RI, 2005.
[13] D. Mendelson, A. Nachmias and S. S. Watson. Rate of convergence for Cardy’s formula. Comm. Math. Phys. 329 (1) (2014) 29-56. · Zbl 1294.82021 · doi:10.1007/s00220-014-2043-8
[14] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math. 333 (2001) 239-244. · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[15] F. J. Viklund. Convergence rates for loop-erased random walk and other loewner curves. Ann. Probab. To appear, 2015. Available at . · Zbl 1306.60118 · doi:10.1214/13-AOP872
[16] S. E. Warschawski. On the degree of variation in conformal mapping of variable regions. Trans. Amer. Math. Soc. 69 (2) (1950) 335-356. · Zbl 0041.05102 · doi:10.2307/1990363
[17] W. Werner. Lectures on two-dimensional critical percolation. In Statistical Mechanics 297-360. IAS/Park City Math. Ser. 16 . Amer. Math. Soc., Providence, RI, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.