×

zbMATH — the first resource for mathematics

The closure of a linear space in a product of lines. (English) Zbl 1331.05051
Summary: Given a linear space \(L\) in affine space \({\mathbb {A}}^n\), we study its closure \(\widetilde{L}\) in the product of projective lines \(({\mathbb {P}}^1)^n\). We show that the degree, multigraded Betti numbers, defining equations, and universal Gröbner basis of its defining ideal \(I(\widetilde{L})\) are all combinatorially determined by the matroid \(M\) of \(L\). We also prove that \(I(\widetilde{L})\) and all of its initial ideals are Cohen-Macaulay with the same Betti numbers, and can be used to compute the \(h\)-vector of \(M\). This variety \(\widetilde{L}\) also gives rise to two new objects with interesting properties: the cocircuit polytope and the external activity complex of a matroid.

MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
Software:
Gfan
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aguiar, M., Ardila, F.: The Hopf monoid of generalized permutahedra. preprint (2011)
[2] Ardila, F; Benedetti, C; Doker, J, Matroid polytopes and their volumes, Discrete Comput. Geom., 43, 841-854, (2010) · Zbl 1204.52016
[3] Ardila, F, Semimatroids and their Tutte polynomials, Revis. Colomb. de Matemáticas, 41, 39-66, (2007) · Zbl 1136.05008
[4] Aholt, C; Sturmfels, B; Thomas, R, A Hilbert scheme in computer vision, Can. J. Math., 65, 961-988, (2013) · Zbl 1284.13035
[5] Boocher, A., Brown, B. C., Duff, T., Lyman, L., Murayama, T., Nesky, A., Schaefer, K.: Robust Graph Ideals. arXiv preprint arXiv:1309.7630 (2013) · Zbl 1365.13042
[6] Björner, A, The homology and shellability of matroids and geometric lattices, Matroid Appl., 40, 226-283, (1992) · Zbl 0772.05027
[7] Boocher, A, Free resolutions and sparse determinantal ideals, Math. Res. Lett., 19, 805-821, (2012) · Zbl 1273.14097
[8] Boocher, A., Robeva, E.: Robust Toric Ideals. arXiv:1304.0603 · Zbl 1315.13041
[9] Brylawski, T, A combinatorial model for series-parallel networks, Trans. Am. Math. Soc., 154, 1-22, (1971) · Zbl 0215.33702
[10] Blok, RJ; Sagan, BE, Topological properties of activity orders for matroid bases, J. Combin. Theory Ser. B, 94, 101-116, (2005) · Zbl 1063.05029
[11] Conca, A., Hoşten, S., Thomas, R. R.: Nice initial complexes of some classical ideals, Algebraic and geometric combinatorics. Contemp. Math. vol. 423, Am. Math. Soc., Providence, RI, (2006) pp. 11-42 · Zbl 1116.13015
[12] Conca, A., De Negri, E., Gorla, E.: Universal Groebner bases for maximal minors. arXiv:1302.4461 (2013) · Zbl 1063.05029
[13] Crapo, H, The Tutte polynomial, Aequationes Mathematicae, 3, 211-229, (1969) · Zbl 0197.50202
[14] Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Junger M., Reinelt G., Rinaldi G. (Eds). Combinatorial Optimization, Lecture Notes in Computer Science, vol. 2570, Springer Berlin, (2003), pp. 11-26 (English) · Zbl 1024.90054
[15] Eisenbud, D.: Commutative algebra, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995). With a view toward algebraic geometry · Zbl 0819.13001
[16] Gelfand, IM; Goresky, RM; MacPherson, RD; Serganova, VV, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math., 63, 301-316, (1987) · Zbl 0622.57014
[17] Herzog, J., Hibi, T.: Monomial Ideals, Graduate Texts in Mathematics, vol. 260. Springer, London (2011) · Zbl 1206.13001
[18] Jensen, A.N.: Gfan, A Software System for Gröbner Fans and Tropical Varieties. http://home.imf.au.dk/jensen/software/gfan/gfan.html
[19] Knutson, A; Miller, E, Gröbner geometry of Schubert polynomials, Ann. Math., 161, 1245-1318, (2005) · Zbl 1089.14007
[20] Kozen, D.: The Design and Analysis of Algorithms. Springer, New York (1991) · Zbl 0743.68006
[21] Kung, J.P.S.: Strong Maps. Encyclopedia of Mathematics, vol. 26, pp. 224-253. Cambridge University Press, Cambridge (1986)
[22] Li, B.: Images of Rational Maps of Projective Spaces. arXiv:1310.8453 · Zbl 0622.57014
[23] Las Vergnas, Michel: On the Tutte Polynomial of a Morphism of Matroids. Ann. Discrete Math. 8, 7-20 (1980), Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part I · Zbl 0462.05021
[24] Las Vergnas, M, Active orders for matroid bases, Eur. J. Comb., 22, 709-721, (2001) · Zbl 0984.52018
[25] Morton, J; Pachter, L; Shiu, A; Sturmfels, B; Wienand, O, Convex rank tests and semigraphoids, SIAM J. Discrete Math., 23, 1117-1134, (2009) · Zbl 1198.62038
[26] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)
[27] Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992) · Zbl 0784.05002
[28] Peeva, I.: Graded Syzygies, Algebra and Applications, vol. 14. Springer, London (2011) · Zbl 1213.13002
[29] Postnikov, A, Permutohedra, associahedra, and beyond, Int. Math. Res. Notices, 6, 1026-1106, (2009) · Zbl 1162.52007
[30] Postnikov, A; Reiner, V; Williams, L, Faces of generalized permutohedra, Doc. Math. J. DMV, 13, 207-273, (2008) · Zbl 1167.05005
[31] Proudfoot, N; Speyer, D, A broken circuit ring, Beit. Algebra Geom., 47, 161-166, (2006) · Zbl 1095.13024
[32] Petrović, S., Thoma, A., Vladoiu, M.: Bouquet Algebra of Toric Ideals. arXiv preprint arXiv:1507.02740 (2015) · Zbl 1284.13035
[33] Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, New York (2003) · Zbl 1041.90001
[34] Sturmfels, B.: Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8. American Mathematical Society, Providence (1996) · Zbl 0856.13020
[35] Sturmfels, B; Zelevinsky, A, Maximal minors and their leading terms, Adv. Math., 98, 65-112, (1993) · Zbl 0776.13009
[36] Tatakis, C.: Generalized Robust Toric Ideals. arXiv preprint arXiv:1503.00367 (2015) · Zbl 1323.05067
[37] Tutte, WT, A contribution to the theory of chromatic polynomials, Can. J. Math., 6, 80-91, (1954) · Zbl 0055.17101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.