×

zbMATH — the first resource for mathematics

Reflection formulas and continuation of solutions of boundary-value problems. (English. Russian original) Zbl 1331.35101
Comput. Math. Model. 7, No. 1, 117-125 (1996); translation from Matematicheskoe Modelirovanie, Moscow University, Moscow, 1993, 317-328 (1993).

MSC:
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B60 Continuation and prolongation of solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ph. Davis, The Schwarz Function and Its Applications, Carus Mathematical Monographs, MAA (1979).
[2] P. Ebenfelt, Singularities Encountered by the Analytic Continuation of Solutions to Dirichlet’s Problem, Research Report TRITA-MAT-1991-0047, Royal Inst. Technol., Stockholm (1991). · Zbl 0741.30003
[3] P. Garabedian, ?Partial differential equations with more than two independent variables in the complex domain,? J. Math. Mech.,9, No. 2, 241?271 (1960). · Zbl 0096.06503
[4] B. Gustaffson, ?On quadrature domains and an inverse problem in potential theory,? J. Analyse Math. (1994).
[5] B. Gustaffson, On Quadrature Domains, Graviequivalence and Balayage, Preprint (1992).
[6] J. Hansen and H. S. Shapiro, Functional Equations and Harmonic Extensions, Research Report TRITA-MAT-1992-0032, Royal Inst. Technol., Stockholm (1992). · Zbl 0793.30002
[7] D. Khavinson and H. S. Shapiro, The Schwarz Potential inR n and Cauchy’s Problem for the Laplace Equation, Research Report TRITA-MAT-1989-36, Royal Inst. Technol., Stockholm (1989).
[8] D. Khavinson and H. S. Shapiro, ?Remarks on the reflection principle for harmonic functions,? J. Analyse Math.,54, 60?76 (1989). · Zbl 0699.31016 · doi:10.1007/BF02796142
[9] A. G. Kyurkchan, B. Yu. Sternin, and V. E. Shatalov, ?Singularities of continuations of solutions of Maxwell’s equations,? Radiotekhnika i Elektronika,37, No. 5, 777?796 (1992).
[10] H. Lewy, ?On the reflection laws of second order differential equations in two independent variables,? Bull. AMS,65, 37?58 (1959). · Zbl 0089.08001 · doi:10.1090/S0002-9904-1959-10270-6
[11] T. V. Savina, ?On reflection formula for elliptical equations of high order,? Mat. Zametki (1993). · Zbl 0829.35029
[12] T. V. Savina, B. Yu. Sternin, and V. E. Shatalov, ?On the reflection law for Helmholtz equation,? Sov. Math. Dokl.,45, No. 1, 42?45 (1992). · Zbl 0807.35024
[13] H. A. Schwarz, ?Uber die Integration der partiellen Differentialgleichung (? 2 u/?x 2) + (? 2 u/?y 2) = 0 unter vorgeschriebenen Grens- und Unstetigkeitsbedingungen,? Monat. Konigl. Akad. Wiss. Berlin, pp. 767?795 (1870).
[14] B. Yu. Sternin and V. E. Shatalov, ?Continuation of solutions of elliptic equations and localization of singularities,? Lect. Notes Math., Vol. 1520, 237?260 (1992). · Zbl 0803.35028 · doi:10.1007/BFb0084724
[15] B. Yu. Sternin and V. E. Shatalov, ?On the continuation problem of solutions to elliptic equations,? Differ. Equations (trans. of Differentisal’nye Uravneniya), 144?153 (1992).
[16] E. Study, ?Einige elementare Bemerkungen uber den Prozess der analytischen Fortsetzung,? Math. Ann.63, 239?245 (1907). · JFM 37.0410.01 · doi:10.1007/BF01449904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.