Ramirez, Jorge M.; Thomann, Enrique A.; Waymire, Edward C. Advection-dispersion across interfaces. (English) Zbl 1331.60003 Stat. Sci. 28, No. 4, 487-509 (2013). Summary: This article concerns a systemic manifestation of small scale interfacial heterogeneities in large scale quantities of interest to a variety of diverse applications spanning the earth, biological and ecological sciences. Beginning with formulations in terms of partial differential equations governing the conservative, advective-dispersive transport of mass concentrations in divergence form, the specific interfacial heterogeneities are introduced in terms of (spatial) discontinuities in the diffusion coefficient across a lower-dimensional hypersurface. A pathway to an equivalent stochastic formulation is then developed with special attention to the interfacial effects in various functionals such as first passage times, occupation times and local times. That an appreciable theory is achievable within a framework of applications involving one-dimensional models having piecewise constant coefficients greatly facilitates our goal of a gentle introduction to some rather dramatic mathematical consequences of interfacial effects that can be used to predict structure and to inform modeling. Cited in 13 Documents MSC: 60-02 Research exposition (monographs, survey articles) pertaining to probability theory 60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) 60H30 Applications of stochastic analysis (to PDEs, etc.) 60J55 Local time and additive functionals 60J65 Brownian motion 76R50 Diffusion Keywords:skew Brownian motion; heterogeneous dispersion; interface; local time; occupation time; breakthrough curve; ocean upwelling; mathematical ecology; solute transport; river network dispersion; insect dispersion PDFBibTeX XMLCite \textit{J. M. Ramirez} et al., Stat. Sci. 28, No. 4, 487--509 (2013; Zbl 1331.60003) Full Text: DOI arXiv Euclid References: [1] Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M. and Bava, J. (2004). Marine fronts at the continental shelves of austral South America: Physical and ecological processes. Journal of Marine Systems 44 83-105. [2] Appuhamillage, T. and Sheldon, D. (2012). First passage time of skew Brownian motion. J. Appl. Probab. 49 685-696. · Zbl 1266.60140 · doi:10.1239/jap/1346955326 [3] Appuhamillage, T. A., Bokil, V. A., Thomann, E. A., Waymire, E. C. and Wood, B. D. (2010). Solute transport across an interface: A Fickian theory for skewness in breakthrough curves. Water Resour. Res. 46 W07511. · Zbl 1226.60113 [4] Appuhamillage, T., Bokil, V., Thomann, E., Waymire, E. and Wood, B. (2011a). Corrections for “Occupation and local times for skew Brownian motion with applications to dispersion across an interface.” Ann. Appl. Probab. 21 2050-2051. · Zbl 1238.60117 · doi:10.1214/11-AAP775 [5] Appuhamillage, T., Bokil, V., Thomann, E., Waymire, E. and Wood, B. (2011b). Occupation and local times for skew Brownian motion with applications to dispersion across an interface. Ann. Appl. Probab. 21 183-214. · Zbl 1226.60113 · doi:10.1214/10-AAP691 [6] Appuhamillage, T. A., Bokil, V. A., Thomann, E. A., Waymire, E. C. and Wood, B. D. (2012). Interfacial phenomena and natural local time. Unpublished manuscript. Available at . arXiv:1204.0271 · Zbl 1226.60113 [7] Aris, R. (1956). On the dispersion of a solute particle in a fluid moving through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 235 67-77. [8] Aryasova, O. V. and Portenko, M. I. (2008). A uniqueness theorem for the martingale problem describing a diffusion in media with membranes. Theory Stoch. Process. 14 1-9. · Zbl 1224.60200 [9] Barndorff-Nielsen, O. E. (1998). Stochastic Methods in Hydrology: Rain, Landforms and Floods, Volume 7. In Advanced Series on Statistical Science and Applied Probability . World Scientific, Singapore. · Zbl 0921.62143 [10] Berkowitz, B., Cortis, A., Dror, I. and Scher, H. (2009). Laboratory experiments on dispersive transport across interfaces: The role of flow direction. Water Resour. Res. 45 2. [11] Bhattacharya, R. N. and Gupta, V. K. (1984). On the Taylor-Aris theory of solute transport in a capillary. SIAM J. Appl. Math. 44 33-39. · Zbl 0537.76078 · doi:10.1137/0144004 [12] Bhattacharya, R. N. and Waymire, E. C. (2009). Stochastic processes with applications. SIAM Classics in Applied Mathematics 61 . Originally published: Wiley, New York. · Zbl 1171.60333 · doi:10.1137/1.9780898718997 [13] Bhattacharya, R. and Waymire, E. C. (2007). A Basic Course in Probability Theory . Springer, New York. · Zbl 1138.60001 · doi:10.1007/978-0-387-71939-9 [14] Bokil, V. A., Gibson, N. L., Nguyen, S. T., Thomann, E. A. and Waymire, E. C. (2013). Numerical methods for linear diffusion equations in the presence of an interface. Preprint. Available at [math.NA]. arXiv:1310.8248 [15] Brillinger, D. R. R. (2003). Sampling constrained animal motion using stochastic differential equations. In Probability , Statistics and Their Applications : Papers in Honor of Rabi Bhattacharya. Institute of Mathematical Statistics Lecture Notes-Monograph Series 41 35-48. IMS, Beachwood, OH. · Zbl 1042.92042 · doi:10.1214/lnms/1215091656 [16] Brillinger, D. R., Preisler, H. K., Ager, A. A., Kie, J. G. and Stewart, B. S. (2002). Employing stochastic differential equations to model wildlife motion. Bull. Braz. Math. Soc. ( N.S. ) 33 385-408. Fifth Brazilian School in Probability (Ubatuba, 2001). · Zbl 1035.60060 · doi:10.1007/s005740200021 [17] Brooks, J. K. and Chacon, R. V. (1983). Diffusions as a limit of stretched Brownian motions. Adv. Math. 49 109-122. · Zbl 0542.60079 · doi:10.1016/0001-8708(83)90070-1 [18] Cantrell, R. S. and Cosner, C. (2003). Spatial Ecology via Reaction-Diffusion Equations . Wiley, Chichester. · Zbl 1059.92051 [19] Carslaw, H. S. and Jaeger, J. C. (1988). Conduction of Heat in Solids , 2nd ed. Oxford Univ. Press, New York. · Zbl 0972.80500 [20] Chen, Z.-Q. and Fukushima, M. (2012). Symmetric Markov Processes , Time Change , and Boundary Theory. London Mathematical Society Monographs Series 35 . Princeton Univ. Press, Princeton, NJ. · Zbl 1253.60002 [21] Cherny, A. S., Shiryaev, A. N. and Yor, M. (2002). Limit behaviour of the “horizontal-vertical” random walk and some extensions of the Donsker-Prokhorov invariance principle. Teor. Veroyatn. Primen. 47 498-517. · Zbl 1034.60076 · doi:10.1137/S0040585X97979834 [22] Decamps, M., Goovaerts, M. and Schoutens, W. (2006). Asymmetric skew Bessel processes and their applications to finance. J. Comput. Appl. Math. 186 130-147. · Zbl 1087.91022 · doi:10.1016/j.cam.2005.03.067 [23] Étoré, P. and Martinez, M. (2013). Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process. Monte Carlo Methods Appl. 19 41-71. · Zbl 1269.65007 · doi:10.1515/mcma-2013-0002 [24] Fagan, W. F. (2002). Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83 3243-3249. [25] Fagan, W. F., Cantrell, R. S. and Cosner, C. (1999). How habitat edges change species interactions. The American Naturalist 153 165-182. [26] Felder, W. and Waymire, E. C. (2013). On the drift paradox in a regime-switching mode. Preprint. Available at . arXiv:1304.1208 [27] Fernholz, E. R., Ichiba, T. and Karatzas, I. (2013). Two Brownian particles with rank-based characteristics and skew-elastic collisions. Stochastic Process. Appl. 123 2999-3026. · Zbl 1296.60148 · doi:10.1016/j.spa.2013.03.019 [28] Fernholz, E. R., Ichiba, T., Karatzas, I. and Prokaj, V. (2013). Planar diffusions with rank-based characteristics and perturbed Tanaka equations. Probab. Theory Related Fields 156 343-374. · Zbl 1274.60247 · doi:10.1007/s00440-012-0430-7 [29] Freidlin, M. and Sheu, S.-J. (2000). Diffusion processes on graphs: Stochastic differential equations, large deviation principle. Probab. Theory Related Fields 116 181-220. · Zbl 0957.60088 · doi:10.1007/PL00008726 [30] Freidlin, M. I. and Wentzell, A. D. (1993). Diffusion processes on graphs and the averaging principle. Ann. Probab. 21 2215-2245. · Zbl 0795.60042 · doi:10.1214/aop/1176989018 [31] Fukushima, M., Ōshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19 . de Gruyter, Berlin. [32] Gelhar, L. W. and Axness, C. L. (1983). Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19 161-180. [33] Gutierrez, J. B., Hurdal, M. K., Parshad, R. D. and Teem, J. L. (2012). Analysis of the Trojan Y chromosome model for eradication of invasive species in a dendritic riverine system. J. Math. Biol. 64 319-340. · Zbl 1284.92086 · doi:10.1007/s00285-011-0413-9 [34] Hairer, M. and Manson, C. (2010). Periodic homogenization with an interface: The one-dimensional case. Stochastic Process. Appl. 120 1589-1605. · Zbl 1202.60129 · doi:10.1016/j.spa.2010.03.016 [35] Hairer, M. and Manson, C. (2011). Periodic homogenization with an interface: The multi-dimensional case. Ann. Probab. 39 648-682. · Zbl 1217.60044 · doi:10.1214/10-AOP564 [36] Harrison, J. M. and Shepp, L. A. (1981). On skew Brownian motion. Ann. Probab. 9 309-313. · Zbl 0462.60076 · doi:10.1214/aop/1176994472 [37] Hoteit, H., Mose, R., Younes, A., Lehmann, F. and Ackerer, P. (2002). Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math. Geol. 34 435-456. · Zbl 1107.76401 · doi:10.1023/A:1015083111971 [38] Itô, K. and McKean, H. P. Jr. (1963). Brownian motions on a half line. Illinois J. Math. 7 181-231. · Zbl 0114.33601 [39] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113 . Springer, New York. · Zbl 0638.60065 [40] Kuo, R. H., Irwin, N. C., Greenkorn, R. A. and Cushman, J. H. (1999). Experimental investigation of mixing in aperiodic heterogeneous porous media: Comparison with stochastic transport theory. Transp. Porous Media 37 169-182. [41] LaBolle, E. M., Quastel, J. and Fogg, G. E. (1998). Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection-dispersion equations. Water Resour. Res. 34 1685-1693. [42] LaBolle, E. M., Quastel, J., Fogg, G. E. and Gravner, J. (2000). Diffusion processes in composite porous media and their numerical integration by random walks: Generalized stochastic differential equations with discontinuous coefficients. Water Resour. Res. 36 1685-1693. [43] Le Gall, J. F. (1984). One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic Analysis and Applications ( Swansea , 1983). Lecture Notes in Math. 1095 51-82. Springer, Berlin. · doi:10.1007/BFb0099122 [44] Lejay, A. (2006). On the constructions of the skew Brownian motion. Probab. Surv. 3 413-466. · Zbl 1189.60145 · doi:10.1214/154957807000000013 [45] Lejay, A. and Pichot, G. (2012). Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps. J. Comput. Phys. 231 7299-7314. · Zbl 1284.65007 · doi:10.1016/j.jcp.2012.07.011 [46] Lutscher, F., Lewis, M. A. and McCauley, E. (2006). Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68 2129-2160. · Zbl 1296.92211 · doi:10.1007/s11538-006-9100-1 [47] Lutscher, F., Pachepsky, E. and Lewis, M. A. (2005). The effect of dispersal patterns on stream populations. SIAM Rev. 47 749-772 (electronic). · Zbl 1076.92052 · doi:10.1137/050636152 [48] Ma, Z. M. and Röckner, M. (1992). Introduction to the Theory of ( Nonsymmetric ) Dirichlet Forms . Springer, Berlin. [49] Martinez, M. and Talay, D. (2012). One-dimensional parabolic diffraction equations: Pointwise estimates and discretization of related stochastic differential equations with weighted local times. Electron. J. Probab. 17 1-32. · Zbl 1244.60058 · doi:10.1214/EJP.v17-1905 [50] Matano, R. and Palma, E. (2008). On the upwelling of downwelling currents. Journal of Physical Oceanography 38 2482-2500. [51] Müller, K. (1954). Investigations on the organic drift in north swedish streams. Rep. Inst. Freshwat. Res. Drottningholm 35 133-148. [52] Nakao, S. (1972). On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9 513-518. · Zbl 0255.60039 [53] Okubo, A. and Levin, S. A. (2001). Diffusion and Ecological Problems : Modern Perspectives , 2nd ed. Interdisciplinary Applied Mathematics 14 . Springer, New York. · Zbl 1027.92022 [54] Ouknine, Y. (1990). Le “Skew-Brownian motion” et les processus qui en dérivent. Teor. Veroyatn. Primen. 35 173-179. · Zbl 0696.60080 [55] Ovaskainen, O. and Cornell, S. J. (2003). Biased movement at a boundary and conditional occupancy times for diffusion processes. J. Appl. Probab. 40 557-580. · Zbl 1078.60061 · doi:10.1239/jap/1059060888 [56] Peckham, S. D. (1995). New results for self-similar trees with applications to river networks. Water Resources Research 31 1023-1029. [57] Perrin, J. (1913). Les Atomes/Par Jean Perrin , Avec 13 Figures . F. Alcan, Paris. [58] Peskir, G. (2007). A change-of-variable formula with local time on surfaces. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 69-96. Springer, Berlin. · Zbl 1141.60035 · doi:10.1007/978-3-540-71189-6_2 [59] Portenko, N. I. (1990). Generalized Diffusion Processes. Translations of Mathematical Monographs 83 . Amer. Math. Soc., Providence, RI. · Zbl 0727.60088 [60] Prokaj, V. (2011). The solution of the perturbed Tanaka-Equation is pathwise unique. Available at . arXiv:1104.0740 · Zbl 1284.60134 · doi:10.1214/11-AOP716 [61] Ramirez, J. M. (2011). Multi-skewed Brownian motion and diffusion in layered media. Proc. Amer. Math. Soc. 139 3739-3752. · Zbl 1231.60084 · doi:10.1090/S0002-9939-2011-10766-4 [62] Ramirez, J. M. (2012a). Population persistence under advection-diffusion in river networks. J. Math. Biol. 65 919-942. · Zbl 1251.92046 · doi:10.1007/s00285-011-0485-6 [63] Ramirez, J. M. (2012b). Green’s functions for Sturm-Liouville problems on directed tree graphs. Rev. Colombiana Mat. 46 15-25. · Zbl 1353.34035 [64] Ramirez, J. M., Thomann, E. A., Waymire, E. C., Haggerty, R. and Wood, B. (2006). A generalized Taylor-Aris formula and skew diffusion. Multiscale Model. Simul. 5 786-801. · Zbl 1122.60072 · doi:10.1137/050642770 [65] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006 [66] Rodriguez-Iturbe, I. and Rinaldo, A. (2001). Fractal River Basins : Chance and Self-Organization . Cambridge Univ. Press, Cambridge. [67] Schultz, C. B. and Crone, E. E. (2001). Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82 1879-1892. [68] Speirs, D. C. and Gurney, W. S. C. (2001). Population persistence in rivers and estuaries. Ecology 82 1219-1237. [69] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes . Springer, Berlin. Reprint of the 1997 edition. · Zbl 1103.60005 [70] Taylor, G. I. (1953). Dispersion of a soluble matter in solvent flowing through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 219 186-203. [71] Walsh, J. B. (1978). A diffusion with a discontinuous local time. Astérisque 52-53 37-45. [72] Wooding, R. A. (1960). Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 9 183-192. · Zbl 0096.21801 · doi:10.1017/S0022112060001031 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.