×

zbMATH — the first resource for mathematics

The whetstone and the alum block: balanced objective Bayesian comparison of nested models for discrete data. (English) Zbl 1331.62131
Summary: When two nested models are compared, using a Bayes factor, from an objective standpoint, two seemingly conflicting issues emerge at the time of choosing parameter priors under the two models. On the one hand, for moderate sample sizes, the evidence in favor of the smaller model can be inflated by diffuseness of the prior under the larger model. On the other hand, asymptotically, the evidence in favor of the smaller model typically accumulates at a slower rate. With reference to finitely discrete data models, we show that these two issues can be dealt with jointly, by combining intrinsic priors and nonlocal priors in a new unified class of priors. We illustrate our ideas in a running Bernoulli example, then we apply them to test the equality of two proportions, and finally we deal with the more general case of logistic regression models.

MSC:
62F15 Bayesian inference
62-07 Data analysis (statistics) (MSC2010)
62F03 Parametric hypothesis testing
62H15 Hypothesis testing in multivariate analysis
Software:
mcmc
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Altomare, D., Consonni, G. and La Rocca, L. (2013). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. Biometrics 69 478-487. · Zbl 1274.62709
[2] Bedrick, E. J., Christensen, R. and Johnson, W. (1996). A new perspective on priors for generalized linear models. J. Amer. Statist. Assoc. 91 1450-1460. · Zbl 0882.62057
[3] Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 109-122. · Zbl 0870.62021
[4] Bernardo, J.-M. and Smith, A. F. M. (1994). Bayesian Theory . Wiley, Chichester. · Zbl 0796.62002
[5] Cano, J. A., Salmerón, D. and Robert, C. P. (2008). Integral equation solutions as prior distributions for Bayesian model selection. TEST 17 493-504. · Zbl 1367.62065
[6] Casella, G. and Moreno, E. (2005). Intrinsic meta-analysis of contingency tables. Stat. Med. 24 583-604.
[7] Casella, G. and Moreno, E. (2006). Objective Bayesian variable selection. J. Amer. Statist. Assoc. 101 157-167. · Zbl 1118.62313
[8] Casella, G. and Moreno, E. (2009). Assessing robustness of intrinsic tests of independence in two-way contingency tables. J. Amer. Statist. Assoc. 104 1261-1271. · Zbl 1328.62359
[9] Casella, G., Girón, F. J., Martínez, M. L. and Moreno, E. (2009). Consistency of Bayesian procedures for variable selection. Ann. Statist. 37 1207-1228. · Zbl 1160.62004
[10] Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output. J. Amer. Statist. Assoc. 96 270-281. · Zbl 1015.62020
[11] Cohen, J. (1992). A power primer. Psychol. Bull. 112 155-159.
[12] Consonni, G. and La Rocca, L. (2008). Tests based on intrinsic priors for the equality of two correlated proportions. J. Amer. Statist. Assoc. 103 1260-1269. · Zbl 1205.62024
[13] Consonni, G. and La Rocca, L. (2011). On moment priors for Bayesian model choice with applications to directed acyclic graphs. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 119-144. Oxford Univ. Press, Oxford.
[14] Consonni, G., Moreno, E. and Venturini, S. (2011). Testing Hardy-Weinberg equilibrium: An objective Bayesian analysis. Stat. Med. 30 62-74.
[15] Dawid, A. P. (2011). Posterior model probabilities. In Philosophy of Statistics (P. S. Bandyopadhyay and M. Forster, eds.) 607-630. Elsevier, Amsterdam.
[16] Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2002). On Bayesian model and variable selection using MCMC. Statist. Comput. 12 27-36. · Zbl 1247.62086
[17] Efron, B. (1996). Empirical Bayes methods for combining likelihoods. J. Amer. Statist. Assoc. 91 538-565. · Zbl 0868.62018
[18] Ferguson, T. S. (1996). A Course in Large Sample Theory . Chapman & Hall, London. · Zbl 0871.62002
[19] Forster, J. J. (2010). Bayesian inference for Poisson and multinomial log-linear models. Stat. Methodol. 7 210-224. · Zbl 1291.62067
[20] Geyer, C. J. (2010). mcmc: Markov chain Monte Carlo. R package, Version 0.8.
[21] Girón, F. J., Moreno, E. and Casella, G. (2007). Objective Bayesian analysis of multiple changepoints for linear models. In Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 227-252. Oxford Univ. Press, Oxford. · Zbl 1252.62019
[22] Girón, F. J., Martínez, M. L., Moreno, E. and Torres, F. (2006). Objective testing procedures in linear models: Calibration of the \(p\)-values. Scand. J. Stat. 33 765-784. · Zbl 1164.62322
[23] Goutis, C. and Robert, C. P. (1998). Model choice in generalised linear models: A Bayesian approach via Kullback-Leibler projections. Biometrika 85 29-37. · Zbl 0903.62061
[24] Jaynes, E. T. (1979). Review of “Inference, method and decision: Towards a Bayesian philosophy of science.” J. Amer. Statist. Assoc. 74 740-741.
[25] Jefferys, W. H. and Berger, J. O. (1992). Ockham’s Razor and Bayesian analysis. American Scientist 80 64-72.
[26] Jeffreys, H. (1961). Theory of Probability , 3rd ed. Clarendon, Oxford. · Zbl 0116.34904
[27] Johnson, V. E. and Rossell, D. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 143-170.
[28] Johnson, V. E. and Rossell, D. (2012). Bayesian model selection in high-dimensional settings. J. Amer. Statist. Assoc. 107 649-660. · Zbl 1261.62024
[29] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028
[30] Leon-Novelo, L., Moreno, E. and Casella, G. (2012). Objective Bayes model selection in probit models. Stat. Med. 31 353-365.
[31] Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O. (2008). Mixtures of \(g\) priors for Bayesian variable selection. J. Amer. Statist. Assoc. 103 410-423. · Zbl 1335.62026
[32] Moreno, E. (1997). Bayes factors for intrinsic and fractional priors in nested models. Bayesian robustness. In \(L_{ 1 }\)-statistical Procedures and Related Topics ( Neuchâtel , 1997) (Y. Dodge, ed.). Institute of Mathematical Statistics Lecture Notes-Monograph Series 31 257-270. IMS, Hayward, CA. · Zbl 0953.62021
[33] Moreno, E., Bertolino, F. and Racugno, W. (1998). An intrinsic limiting procedure for model selection and hypotheses testing. J. Amer. Statist. Assoc. 93 1451-1460. · Zbl 1064.62513
[34] Moreno, E., Casella, G. and Garcia-Ferrer, A. (2005). An objective Bayesian analysis of the change point problem. Stoch. Environ. Res. Risk Assess. 19 191-204.
[35] Moreno, E., Girón, F. J. and Casella, G. (2010). Consistency of objective Bayes factors as the model dimension grows. Ann. Statist. 38 1937-1952. · Zbl 1323.62024
[36] Morris, C. N. (1987). Comments on “Testing a point null hypothesis: The irreconcilability of \(P\) values and evidence.” J. Amer. Statist. Assoc. 82 131-133.
[37] Neal, R. M. (2001). Transferring prior information between models using imaginary data. Technical Report 0108, Dept. Statistics, Univ. Toronto.
[38] O’Hagan, A. (1995). Fractional Bayes factors for model comparison. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 99-138. · Zbl 0813.62026
[39] O’Hagan, A. and Forster, J. (2004). Kendall’s Advanced Theory of Statistics , Vol. 2 b : Bayesian Inference , 2nd ed. Arnold, Sevenoaks, UK. · Zbl 1058.62002
[40] Pérez, J. M. and Berger, J. O. (2002). Expected-posterior prior distributions for model selection. Biometrika 89 491-511. · Zbl 1036.62026
[41] Robert, C. P. (2001). The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation , 2nd ed. Springer, New York. · Zbl 0980.62005
[42] Robert, C. P. and Casella, G. (1994). Distance weighted losses for testing and confidence set evaluation. Test 3 163-182. · Zbl 0815.62008
[43] Robert, C. P., Chopin, N. and Rousseau, J. (2009). Harold Jeffreys’s theory of probability revisited. Statist. Sci. 24 141-172. · Zbl 1328.62012
[44] Rubin, H. (1987). A weak system of axioms for “rational” behavior and the nonseparability of utility from prior. Statist. Decisions 5 47-58. · Zbl 0616.62007
[45] Senn, S. (2009). Comment: Harold Jeffreys’s theory of probability revisited. Statist. Sci. 24 185-186. · Zbl 1328.62014
[46] Smith, A. F. M. and Spiegelhalter, D. J. (1980). Bayes factors and choice criteria for linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 42 213-220. · Zbl 0433.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.