Defining predictive probability functions for species sampling models. (English) Zbl 1331.62152

Summary: We review the class of species sampling models (SSM). In particular, we investigate the relation between the exchangeable partition probability function (EPPF) and the predictive probability function (PPF). It is straightforward to define a PPF from an EPPF, but the converse is not necessarily true. In this paper we introduce the notion of putative PPFs and show novel conditions for a putative PPF to define an EPPF. We show that all possible PPFs in a certain class have to define (unnormalized) probabilities for cluster membership that are linear in cluster size. We give a new necessary and sufficient condition for arbitrary putative PPFs to define an EPPF. Finally, we show posterior inference for a large class of SSMs with a PPF that is not linear in cluster size and discuss a numerical method to derive its PPF.


62F15 Bayesian inference
60G57 Random measures
62D05 Sampling theory, sample surveys
Full Text: DOI arXiv Euclid


[1] Berry, D. A. and Christensen, R. (1979). Empirical Bayes estimation of a binomial parameter via mixtures of Dirichlet processes. Ann. Statist. 7 558-568. · Zbl 0407.62018
[2] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353-355. · Zbl 0276.62010
[3] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 929-953. · Zbl 0957.60055
[4] Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577-588. · Zbl 0826.62021
[5] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037
[6] Ferguson, T. S. and Klass, M. J. (1972). A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43 1634-1643. · Zbl 0254.60050
[7] Fortini, S., Ladelli, L. and Regazzini, E. (2000). Exchangeability, predictive distributions and parametric models. Sankhyā Ser. A 62 86-109. · Zbl 0973.62002
[8] Gnedin, A., Haulk, C. and Pitman, J. (2010). Characterizations of exchangeable partitions and random discrete distributions by deletion properties. In Probability and Mathematical Genetics. London Mathematical Society Lecture Note Series 378 264-298. Cambridge Univ. Press, Cambridge. · Zbl 1208.60008
[9] Gnedin, A. and Pitman, J. (2005). Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. ( POMI ) 325 83-102, 244-245. · Zbl 1293.60010
[10] Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 5674-5685. · Zbl 1293.60010
[11] Good, I. J. (1965). The Estimation of Probabilities. An Essay on Modern Bayesian Methods. Research Monograph 30 . MIT Press, Cambridge, MA. · Zbl 0168.39603
[12] Ishwaran, H. and James, L. F. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models. Statist. Sinica 13 1211-1235. · Zbl 1086.62036
[13] James, L. F. (2008). Large sample asymptotics for the two-parameter Poisson-Dirichlet process. In Pushing the Limits of Contemporary Statistics : Contributions in Honor of Jayanta K. Ghosh. Inst. Math. Stat. Collect. 3 187-199. IMS, Beachwood, OH.
[14] James, L. F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36 76-97. · Zbl 1190.62052
[15] Jang, G. H., Lee, J. and Lee, S. (2010). Posterior consistency of species sampling priors. Statist. Sinica 20 581-593. · Zbl 1187.62055
[16] Kingman, J. F. C. (1975). Random discrete distribution (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 37 1-22. · Zbl 0331.62019
[17] Kingman, J. F. C. (1978). The representation of partition structures. J. Lond. Math. Soc. (2) 18 374-380. · Zbl 0415.92009
[18] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235-248. · Zbl 0491.60076
[19] León-Novelo, L., Bekele, B. N., Müller, P. and Quintana, F. A. (2012). Borrowing strength with non-exchangeable priors over subpopulations. Biometrics 68 550-558. · Zbl 1274.62811
[20] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278-1291. · Zbl 1117.62386
[21] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Bayesian nonparametric estimation of the probability of discovering new species. Biometrika 94 769-786. · Zbl 1156.62374
[22] Lijoi, A., Prünster, I. and Walker, S. G. (2005). On consistency of nonparametric normal mixtures for Bayesian density estimation. J. Amer. Statist. Assoc. 100 1292-1296. · Zbl 1117.62387
[23] Lijoi, A., Prünster, I. and Walker, S. G. (2008a). Investigating nonparametric priors with Gibbs structure. Statist. Sinica 18 1653-1668. · Zbl 1252.60048
[24] Lijoi, A., Prünster, I. and Walker, S. G. (2008b). Bayesian nonparametric estimators derived from conditional Gibbs structures. Ann. Appl. Probab. 18 1519-1547. · Zbl 1142.62333
[25] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics (N. L. Hjort, C. Holmes, P. Müller and S. G. Walker, eds.) 80-136. Cambridge Univ. Press, Cambridge.
[26] Liu, J. S. (1996). Nonparametric hierarchical Bayes via sequential imputations. Ann. Statist. 24 911-930. · Zbl 0880.62038
[27] MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Comm. Statist. Simulation Comput. 23 727-741. · Zbl 0825.62053
[28] MacEachern, S. N. and Müller, P. (1998). Estimating mixtures of Dirichlet process models. J. Comput. Graph. Statist. 7 223-239.
[29] Navarrete, C., Quintana, F. A. and Müller, P. (2008). Some issues in nonparametric Bayesian modelling using species sampling models. Stat. Model. 8 3-21.
[30] Nieto-Barajas, L. E., Prünster, I. and Walker, S. G. (2004). Normalized random measures driven by increasing additive processes. Ann. Statist. 32 2343-2360. · Zbl 1069.62029
[31] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21-39. · Zbl 0741.60037
[32] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145-158. · Zbl 0821.60047
[33] Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics , Probability and Game Theory. Institute of Mathematical Statistics Lecture Notes-Monograph Series 30 245-267. IMS, Hayward, CA.
[34] Pitman, J. (2003). Poisson-Kingman partitions. In Statistics and Science : A Festschrift for Terry Speed. Institute of Mathematical Statistics Lecture Notes-Monograph Series 40 1-34. IMS, Beachwood, OH.
[35] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875 . Springer, Berlin. · Zbl 1103.60004
[36] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560-585. · Zbl 1068.62034
[37] Trippa, L. and Favaro, S. (2012). A class of normalized random measures with an exact predictive sampling scheme. Scand. J. Stat. 39 444-460. · Zbl 1323.60071
[38] Zabell, S. L. (1982). W. E. Johnson’s “sufficientness” postulate. Ann. Statist. 10 1090-1099 (1 plate). · Zbl 0512.62007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.