Ohta, Masami Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties. II. (English) Zbl 1332.11061 Tokyo J. Math. 37, No. 2, 273-318 (2014). In Part I of this work [J. Math. Soc. Japan 65, No. 3, 733–772 (2013; Zbl 1318.11081)] the author determined the rational torsion subgroup of the modular Jacobian variety \(J_1(N)\), up to \(2\)-torsion, for a prime number \(N \geq 5\). In this paper, the \(p\)-primary part of the rational torsion subgroup of \(J_0(N)\) is determined, where \(N\) is square-free, and, \(p\) is an odd prime such that either \(p \neq 3\) or \(3 \nmid N\). Reviewer: Salman Abdulali (Greenville) Cited in 2 ReviewsCited in 22 Documents MSC: 11G18 Arithmetic aspects of modular and Shimura varieties 11F11 Holomorphic modular forms of integral weight 14G05 Rational points 14G35 Modular and Shimura varieties Keywords:modular Jacobian variety; rational torsion subgroup; Eisenstein ideal Citations:Zbl 1318.11081 PDF BibTeX XML Cite \textit{M. Ohta}, Tokyo J. Math. 37, No. 2, 273--318 (2014; Zbl 1332.11061) Full Text: DOI Euclid OpenURL References: [1] A. Agashe, Rational torsion in elliptic curves and the cuspidal subgroup, · Zbl 1288.11058 [2] A. O. L. Atkin and J. Lehner, Hecke operators on \(\varGamma_0(m)\), Math. Ann. 185 (1970), 134-160. · Zbl 0177.34901 [3] P. Deligne, Courbes elliptiques: Formulaire, d’après J. Tate, In: Modular functions of one variable IV , Lecture Notes in Math. 476 (1975), 53-73. · Zbl 1214.11075 [4] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, In: Modular functions of one variable II , Lecture Notes in Math. 349 (1973), 143-316. [5] B. Edixhoven, The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992), 563-594. · Zbl 0777.11013 [6] B. Edixhoven, Serre’s conjecture, In: Modular forms and Fermat’s Last Theorem , ed. by G. Cornell, J. Silverman and G. Stevens, Springer-Verlag (1997), 209-242. · Zbl 0918.11023 [7] B. Gross, A tameness criterion for Galois representations associated to modular forms (mod \(p\)), Duke Math. J. 61 (1990), 445-517. · Zbl 0743.11030 [8] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg 5 (1927), 199-224 (Math. Werke No. 24). · JFM 53.0345.02 [9] N. Katz, \(p\)-adic properties of modular schemes and modular forms, In: Modular functions of one variable III , Lecture Notes in Math. 350 (1973), 69-190. [10] N. Katz, \(p\)-adic interpolation of real analytic Eisenstein series, Ann. Math. 104 (1976), 459-571. · Zbl 0354.14007 [11] N. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), 481-502. · Zbl 0471.14023 [12] N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Ann. of Math. Stud. 108 (1985). · Zbl 0576.14026 [13] D. Kubert and S. Lang, Modular units , Springer-Verlag (1981). · Zbl 0492.12002 [14] D. Lorenzini, Torsion points on the modular Jacobian \(J_0(N)\), Comp. Math. 96 (1995), 149-172. · Zbl 0846.14017 [15] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33-186. · Zbl 0394.14008 [16] B. Mazur and K. Ribet, Two-dimensional representations in the arithmetic of modular curves, Astérisque 196 - 197 (1991), 215-255. · Zbl 0780.14015 [17] D. Mumford, Abelian varieties , Oxford Univ. Press (1970). · Zbl 0223.14022 [18] A. Ogg, Rational points on certain elliptic modular curves, Proc. Symp. Pure Math. 24 (1973), 221-231. · Zbl 0273.14008 [19] A. Ogg, Diophantine equations and modular forms, Bull. AMS 81 (1975), 14-27. · Zbl 0316.14012 [20] M. Ohta, On the \(p\)-adic Eichler-Shimura isomorphism for \(\Lambda\)-adic cusp forms, J. reine angew. Math. 463 (1995), 49-98. · Zbl 0827.11025 [21] M. Ohta, Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties, J. Math. Soc. Japan 65 (2013), 733-772. · Zbl 1318.11081 [22] M. Raynaud, Schémas en groupes de type \((p,\ldots,p)\), Bull. Soc. Math. Fr. 102 (1974), 241-280. · Zbl 0325.14020 [23] K. Ribet, On modular representations of \({\mathrm Gal}(\overline{\mathbf Q}/{\mathbf Q})\) arising from modular forms, Invent. Math. 100 (1990), 431-476. · Zbl 0773.11039 [24] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique \(p\), Symp. Int. Top. Alg., Mexico (1958), 24-53 (Œuvre I, No. 38). [25] J.-P. Serre, Formes modulaires et fonctions zêta \(p\)-adiques, In: Modular functions of one variable III , Lecture Notes in Math. 350 (1973), 191-268. [26] G. Shimura, Introduction to the arithmetic theory of automorphic functions , Iwanami Shoten and Princeton Univ. Press (1971). · Zbl 0221.10029 [27] T. Takagi, The cuspidal class number formula for the modular curves \(X_0(M)\) with \(M\) square-free, J. Alg. 193 (1997), 180-213. · Zbl 0888.11021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.