×

Boundary integral equations for the transmission eigenvalue problem for Maxwell’s equations. (English) Zbl 1332.35247

Summary: In this paper, we consider the transmission eigenvalue problem for Maxwell’s equations corresponding to non-magnetic inhomogeneities with contrast in electric permittivity that changes sign inside its support. We formulate the transmission eigenvalue problem as an equivalent homogeneous system of the boundary integral equation and, assuming that the contrast is constant near the boundary of the support of the inhomogeneity, we prove that the operator associated with this system is Fredholm of index zero and depends analytically on the wave number. Then we show the existence of wave numbers that are not transmission eigenvalues which by an application of the analytic Fredholm theory implies that the set of transmission eigenvalues is discrete with positive infinity as the only accumulation point.

MSC:

35P25 Scattering theory for PDEs
35Q61 Maxwell equations
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

References:

[1] A.S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of \(t\)-coercivity to study the interior transmission eigenvalue problem , C.R. Acad. Sci. 340 (2011). · Zbl 1244.35099 · doi:10.1016/j.crma.2011.05.008
[2] F. Cakoni and D. Colton, A qualitative approach to inverse scattering theory , Springer, Berlin, 2014. · Zbl 1302.35001 · doi:10.1007/978-1-4614-8827-9
[3] F. Cakoni, D. Colton and P. Monk, The linear sampling method in inverse electromagnetic scattering , CBMS-NSF 80 , SIAM Publications, 2011. · Zbl 1221.78001 · doi:10.1137/1.9780898719406
[4] F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media , Inv. Prob. 26 (2010), 074004. · Zbl 1197.35314 · doi:10.1088/0266-5611/26/7/074004
[5] F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues , SIAM J. Math. Anal. 42 (2010), 237-255. · Zbl 1210.35282 · doi:10.1137/090769338
[6] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media , Inv. Prob. Imaging 1 (2007), 443-456. · Zbl 1149.35078 · doi:10.3934/ipi.2007.1.443
[7] —-, Transmission eigenvalues in inverse scattering theory , Inv. Prob. Appl., Inside Out 60 , MSRI Publications, 2012.
[8] —-, Transmission eigenvalues , Inv. Prob. 29 (2013), 100201. · Zbl 1298.00112
[9] F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem , Int. J. Comp. Sci. Math. 3 (2010), 142-167. · Zbl 1204.78008 · doi:10.1504/IJCSM.2010.033932
[10] L. Chesnel, Interior transmission eigenvalue problem for Maxwell’s equations : The \(T\)-coercivity as an alternative approach , Inv. Prob. 28 (2012), 065005. · Zbl 1243.78024 · doi:10.1088/0266-5611/28/6/065005
[11] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory , 3rd edition, Springer, New York, 2013. · Zbl 1266.35121 · doi:10.1007/978-1-4614-4942-3
[12] D. Colton and S. Meng, Spectral properties of the exterior transmission eigenvalue problem , Inv. Prob. 30 (2014), 105010. · Zbl 1318.65075 · doi:10.1088/0266-5611/30/10/105010
[13] A. Cossonnière, Transmission eigenvalues in electromagnetic scattering , Ph.D. thesis, CERFACS, Toulouse, France, 2011.
[14] A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities , SIAM J. Math. Anal. 43 (2011), 1698-1715. · Zbl 1229.78014 · doi:10.1137/100813890
[15] —-, Surface integral formulation of the interior transmission problem , J. Integral Equations Appl. 25 (2013), 1123-1138. · Zbl 1366.78019 · doi:10.1216/JIE-2013-25-3-341
[16] H. Haddar, The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem , Math. Meth. Appl. Sci. 27 (2004), 2111-2129. · Zbl 1062.35168 · doi:10.1002/mma.465
[17] G. Hsiao and W. Wendland, Boundary integral equations , Springer, Berlin, 2010.
[18] A. Kirsch, An integral equation for Maxwell’s equations in a layered medium with an application to the factorization method , Journal of Integral Equations Appl. 19 (2007), 333-357. · Zbl 1136.78310 · doi:10.1216/jiea/1190905490
[19] A. Kirsch, On the existence of transmission eigenvalues , Inv. Prob. Imaging 2 (2009), 155-172. · Zbl 1186.35122 · doi:10.3934/ipi.2009.3.155
[20] A. Kirsch and F. Hettlich, The mathematical theory of time-harmonic Maxwell’s equations , 190 , Springer, Berlin 2015. · Zbl 1342.35004 · doi:10.1007/978-3-319-11086-8
[21] A. Kleefeld, A numerical method to compute interior transmission eigenvalues , Inv. Prob. 29 (2013), 104012. · Zbl 1292.65123 · doi:10.1088/0266-5611/29/10/104012
[22] R. Kress, Linear integral equations , 3rd ed., Springer Verlag, New York, 2014. · Zbl 1328.45001 · doi:10.1007/978-1-4614-9593-2
[23] E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media , SIAM J. Math. Anal. 44 (2012), 1165-1174. · Zbl 1245.35126 · doi:10.1137/11084738X
[24] —-, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem , Inv. Prob. 29 (2013), 104003.
[25] W. McLean, Strongly elliptic systems and boundary integral equations , Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[26] J.C. Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems , Springer-Verlag, New York, 2001.
[27] L. Päivärinta and J. Sylvester, Transmission eigenvalues , SIAM J. Math. Anal. 40 (2008), 738-753. · Zbl 1159.81411 · doi:10.1137/070697525
[28] L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem , Inv. Prob. 29 (2013), 104001. · Zbl 1296.35105 · doi:10.1088/0266-5611/29/10/104001
[29] J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operator , SIAM J. Math. Anal. 44 (2012), 341-354. · Zbl 1238.81172 · doi:10.1137/110836420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.