Bonavolontà, Giuseppe; Poncin, Norbert On the category of Lie \(n\)-algebroids. (English) Zbl 1332.58005 J. Geom. Phys. 73, 70-90 (2013). Summary: Lie \(n\)-algebroids and Lie infinity algebroids are usually thought of exclusively in supergeometric or algebraic terms. In this work, we apply the higher derived brackets construction to obtain a geometric description of Lie \(n\)-algebroids by means of brackets and anchors. Moreover, we provide a geometric description of morphisms of Lie \(n\)-algebroids over different bases, give an explicit formula for the Chevalley-Eilenberg differential of a Lie \(n\)-algebroid, compare the categories of Lie \(n\)-algebroids and NQ-manifolds, and prove some conjectures of Y. Sheng and C. Zhu [Higher extensions of Lie algebroids and application to Courant algebroids. arxiv:1103.5920]. Cited in 48 Documents MSC: 58H05 Pseudogroups and differentiable groupoids 18D50 Operads (MSC2010) 18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects) 53D55 Deformation quantization, star products 58A50 Supermanifolds and graded manifolds Keywords:Lie \(n\)-algebroids; split NQ-manifolds; morphisms; Chevalley-Eilenberg complex; higher derived brackets; Lie infinity (anti)-algebra × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bojowald, M.; Kotov, A.; Strobl, T., Lie algebroid morphisms, Poisson sigma models, and off-sheff closed gauge symmetries, J. Geom. Phys., 54, 4, 400-426 (2005) · Zbl 1076.53102 [2] Sati, H.; Schreiber, U.; Stasheff, J., \(L_\infty \)-algebra connections and applications to String- and Chern-Simons \(n\)-transport, (Quantum field theory (2009), Birkhäuser: Birkhäuser Basel), 303-424 · Zbl 1183.83099 [3] Shoikhet, B., An explicit construction of the Quillen homotopical category of dg Lie algebras [4] Alexandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A, 12, 7, 1405-1429 (1997) · Zbl 1073.81655 [5] Ševera, P., Some title containing the words “homotopy” and “symplectic”, Trav. Math., XVI (2005), e.g. this one, Univ. Luxemb., Luxembourg · Zbl 1102.58010 [6] Vitagliano, L., On the strong homotopy Lie-Rinehart algebra of a Foliation · Zbl 1316.53024 [7] Baez, J. C.; Crans, A. S., Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ., 12, 492-538 (2004) · Zbl 1057.17011 [8] Khudaverdyan, D.; Mandal, A.; Poncin, N., Higher categorified algebras versus bounded homotopy algebras, Theory Appl. Categ., 25, 10, 251-275 (2011) · Zbl 1237.17023 [9] Lada, T.; Stasheff, J., Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys., 32, 7, 1087-1103 (1993) · Zbl 0824.17024 [10] Sheng, Y.; Zhu, C., Higher extensions of Lie algebroids and applications to Courant algebroids [11] Mackenzie, K. C.H., (General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society. General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society, Lecture Note Series, vol. 213 (2005), Cambridge University Press) · Zbl 1078.58011 [12] Ammar, M.; Poncin, N., Coalgebraic approach to the Loday infinity category, stem differential for \(2 n\)-ary graded and homotopy algebras, Ann. Inst. Fourier (Grenoble), 60, 1, 355-387 (2010) · Zbl 1208.53084 [13] Manin, Y., (Gauge Field Theory and Complex Geometry. Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften, vol. 289 (1988), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0641.53001 [14] Batchelor, M., Two approaches to supermanifolds, Trans. Amer. Math. Soc., 258, 1, 257-270 (1980) · Zbl 0426.58003 [15] Nestruev, J., (Smooth Manifolds and Observables. Smooth Manifolds and Observables, Graduate Texts in Mathematics, vol. 220 (2003), Springer-Verlag) · Zbl 1021.58001 [16] Giachetta, G.; Mangiarotti, L.; Sardanashvily, G., Geometric and Algebraic Topological Methods in Quantum Mechanics (2005), World Scientific · Zbl 1070.70014 [17] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315, 169-185 (2002) · Zbl 1036.53057 [18] Crainic, M.; Moerdijk, I., Deformations of Lie brackets: cohomological aspects, J. Eur. Math. Soc., 10, 4, 1037-1059 (2008) · Zbl 1159.58011 [19] Abad, C. A.; Crainic, M., Representations up to homotopy of Lie algebroids (English summary), J. Reine Angew. Math., 663, 91-126 (2012) · Zbl 1238.58010 [20] Voronov, T., \(Q\)-manifolds and higher analogs of Lie algebroids, (XXIX Workshop on Geometric Methods in Physics. XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., vol. 1307 (2010), Amer. Inst. Phys.: Amer. Inst. Phys. Melville, NY), 191-202 · Zbl 1260.53133 [21] Voronov, T., Higher derived brackets for arbitrary derivations, Trav. Math., XVI, 163-186 (2005) · Zbl 1136.17014 [22] Grabowski, J.; Khudaverdyan, D.; Poncin, N., Loday algebroids and their supergeometric interpretation [23] Higgins, P. J.; Mackenzie, K. C.H., Algebraic constructions in the category of Lie algebroids, J. Algebra, 129, 194-230 (1990) · Zbl 0696.22007 [24] Schuhmacher, F., Deformation of \(L_\infty \)-algebras [25] Loday, J.-L.; Valette, B., Algebraic Operads, Draft (2013) [26] Abraham, R.; Marsden, J. E.; Ratiu, T., (Manifolds, Tensor Analysis, and Applications. Manifolds, Tensor Analysis, and Applications, Global Analysis Pure and Applied: Series B, vol. 2 (1983), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass.) · Zbl 0508.58001 [27] Bkouche, R., Idéaux mous d’un anneau commutatif, applications aux anneaux de fonctions, C. R. Acad. Sci. Paris, 260, 6496-6498 (1965) · Zbl 0142.28901 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.