×

The two-piece normal, binormal, or double Gaussian distribution: its origin and rediscoveries. (English) Zbl 1332.60009

Summary: This paper traces the history of the two-piece normal distribution from its origin in the posthumous Collektivmasslehre of Gustav Theodor Fechner [Leipzig: W. Engelmann (1897; JFM 28.0208.01)] to its rediscoveries and generalisations. The denial of Fechner’s originality by Karl Pearson, reiterated a century later by Oscar Sheynin, is shown to be without foundation.

MSC:

60-03 History of probability theory
60E05 Probability distributions: general theory
01A55 History of mathematics in the 19th century
62E15 Exact distribution theory in statistics

Citations:

JFM 28.0208.01

References:

[1] Arnold, B. C. and Groeneveld, R. A. (1995). Measuring skewness with respect to the mode. Amer. Statist. 49 34-38.
[2] Barnard, G. A. (1989). Sophisticated theory and practice in quality improvement. Philos. Trans. R. Soc. Lond. A 327 581-589.
[3] Barnard, G. A. (1995). Pivotal models and the fiducial argument. Internat. Statist. Rev. 63 309-323. · Zbl 0836.62002 · doi:10.2307/1403482
[4] Blix, M. and Sellin, P. (1998). Uncertainty bands for inflation forecasts. Working Paper 65, Sveriges Riksbank, Stockholm.
[5] Britton, E., Fisher, P. G. and Whitley, J. D. (1998). The Inflation Report projections: Understanding the fan chart. Bank of England Quarterly Bulletin 38 30-37.
[6] Cox, D. R. (2001). Biometrika: The first 100 years. Biometrika 88 3-11. · Zbl 1073.62500 · doi:10.1093/biomet/88.1.3
[7] De Vries, H. (1894). Ueber halbe Galton-Curven als Zeichen discontinuirlicher Variation. Berichte der Deutschen Botanischen Gesellschaft 12 197-207.
[8] Edgeworth, F. Y. (1899). On the representation of statistics by mathematical formulae (Part III). J. Roy. Statist. Soc. 62 373-385.
[9] Fechner, G. T. (1860). Elemente der Psychophysik . Breitkopf and Hartel, Leipzig.
[10] Fechner, G. T. (ed. Lipps, G. F.) (1897). Kollektivmasslehre Engelmann, Leipzig.
[11] Fernández, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. J. Amer. Statist. Assoc. 93 359-371. · Zbl 0910.62024 · doi:10.2307/2669632
[12] Galton, F. (1896). Application of the method of percentiles to Mr. Yule’s data on the distribution of pauperism. J. Roy. Statist. Soc. 59 392-396.
[13] Garvin, J. S. and McClean, S. I. (1997). Convolution and sampling theory of the binormal distribution as a prerequisite to its application in statistical process control. The Statistician 46 33-47.
[14] Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 1317-1339. · Zbl 0683.62068 · doi:10.2307/1913710
[15] Gibbons, J. F. and Mylroie, S. (1973). Estimation of impurity profiles in ion-implanted amorphous targets using joined half-Gaussian distributions. Appl. Phys. Lett. 22 568-569.
[16] Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley, New York. · Zbl 0979.01012
[17] John, S. (1982). The three-parameter two-piece normal family of distributions and its fitting. Comm. Statist. A-Theory Methods 11 879-885. · doi:10.1080/03610928208828279
[18] Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics . Wiley, New York. · Zbl 0213.21101
[19] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions , Vol. 1 , 2nd ed. Wiley, New York. · Zbl 0811.62001
[20] Kimber, A. C. (1985). Methods for the two-piece normal distribution. Comm. Statist. A-Theory Methods 14 235-245. · Zbl 0562.62024 · doi:10.1080/03610928508828907
[21] Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). The Laplace Distribution and Generalizations : A Revisit With Applications to Communications , Economics , Engineering , and Finance . Birkhäuser, Boston, MA. · Zbl 0977.62003
[22] Ludwig, F. (1898). Die pflanzlichen Variationscurven und die Gauss’sche Wahrscheinlichkeitscurve (continuation). Botanisches Centralblatt 73 343-349.
[23] Mudholkar, G. S. and Hutson, A. D. (2000). The epsilon-skew-normal distribution for analyzing near-normal data. J. Statist. Plann. Inference 83 291-309. · Zbl 0943.62012 · doi:10.1016/S0378-3758(99)00096-8
[24] Pearson, K. (1895). Contributions to the mathematical theory of evolution.-II. Skew variation in homogeneous material. Phil. Trans. R. Soc. Lond. A 186 343-414.
[25] Pearson, K. (1905). Das fehlergesetz und seine verallgemeinerungen durch Fechner und Pearson. A rejoinder. Biometrika 4 169-212. · JFM 36.0313.10
[26] Pearson, E. S. (1936). Karl Pearson: An appreciation of some aspects of his life and work. Part I: 1857-1906. Biometrika 28 193-257. · JFM 62.1041.07
[27] Porter, T. M. (2004). Karl Pearson : The Scientific Life in a Statistical Age . Princeton Univ. Press, Princeton, NJ. · Zbl 1069.62001
[28] Ranke, K. E. and Greiner, A. (1904). Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson in ihrer Tragweite für die Anthropologie. Archiv fur Anthropologie 2 295-332.
[29] Runnenburg, J. T. (1978). Mean, median, mode. Stat. Neerl. 32 73-79. · Zbl 0437.62024 · doi:10.1111/j.1467-9574.1978.tb01386.x
[30] Sheynin, O. (2004). Fechner as a statistician. British J. Math. Statist. Psych. 57 53-72. · doi:10.1348/000711004849196
[31] Stigler, S. M. (1986). The History of Statistics : The Measurement of Uncertainty Before 1900. The Belknap Press of Harvard Univ. Press, Cambridge, MA. · Zbl 0656.62005
[32] Stigler, S. M. (1999). Statistics on the Table : The History of Statistical Concepts and Methods . Harvard Univ. Press, Cambridge, MA. · Zbl 0997.62506
[33] Stigler, S. M. (2008). Karl Pearson’s theoretical errors and the advances they inspired. Statist. Sci. 23 261-271. · Zbl 1327.62013 · doi:10.1214/08-STS256
[34] Toth, Z. and Szentimrey, T. (1990). The binormal distribution: A distribution for representing asymmetrical but normal-like weather elements. J. Climate 3 128-136.
[35] Yule, G. U. (1896a). Notes on the history of pauperism in England and Wales from 1850, treated by the method of frequency-curves; with an introduction on the method (with discussion). J. Roy. Statist. Soc. 59 318-357.
[36] Yule, G. U. (1896b). Remarks on Mr. Galton’s note. J. Roy. Statist. Soc. 59 396-398.
[37] Zhu, D. and Galbraith, J. W. (2010). A generalized asymmetric Student-\(t\) distribution with application to financial econometrics. J. Econometrics 157 297-305. · Zbl 1431.62222 · doi:10.1016/j.jeconom.2010.01.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.