×

zbMATH — the first resource for mathematics

Bayesian indirect inference using a parametric auxiliary model. (English) Zbl 1332.62088
Summary: Indirect inference (II) is a methodology for estimating the parameters of an intractable (generative) model on the basis of an alternative parametric (auxiliary) model that is both analytically and computationally easier to deal with. Such an approach has been well explored in the classical literature but has received substantially less attention in the Bayesian paradigm. The purpose of this paper is to compare and contrast a collection of what we call parametric Bayesian indirect inference (pBII) methods. One class of pBII methods uses approximate Bayesian computation (referred to here as ABC II) where the summary statistic is formed on the basis of the auxiliary model, using ideas from II. Another approach proposed in the literature, referred to here as parametric Bayesian indirect likelihood (pBIL), uses the auxiliary likelihood as a replacement to the intractable likelihood. We show that pBIL is a fundamentally different approach to ABC II. We devise new theoretical results for pBIL to give extra insights into its behaviour and also its differences with ABC II. Furthermore, we examine in more detail the assumptions required to use each pBII method. The results, insights and comparisons developed in this paper are illustrated on simple examples and two other substantive applications. The first of the substantive examples involves performing inference for complex quantile distributions based on simulated data while the second is for estimating the parameters of a trivariate stochastic process describing the evolution of macroparasites within a host based on real data. We create a novel framework called Bayesian indirect likelihood (BIL) that encompasses pBII as well as general ABC methods so that the connections between the methods can be established.

MSC:
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist. 37 697-725. · Zbl 1185.60083
[2] Beaumont, M. A., Zhang, W. and Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162 2025-2035.
[3] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003
[4] Blum, M. G. B. (2010). Approximate Bayesian computation: A nonparametric perspective. J. Amer. Statist. Assoc. 105 1178-1187. · Zbl 1390.62052
[5] Blum, M. G. B., Nunes, M. A., Prangle, D. and Sisson, S. A. (2013). A comparative review of dimension reduction methods in approximate Bayesian computation. Statist. Sci. 28 189-208. · Zbl 1331.62123
[6] Cox, D. R. (1961). Tests of separate families of hypotheses. In Proc. 4 th Berkeley Sympos. Math. Statist. and Prob. , Vol. I 105-123. Univ. California Press, Berkeley, CA. · Zbl 0201.52102
[7] Cox, D. R. and Hinkley, D. V. (1979). Theoretical Statistics . CRC Press, Boca Raton, FL. · Zbl 0334.62003
[8] Cox, D. R. and Wermuth, N. (1990). An approximation to maximum likelihood estimates in reduced models. Biometrika 77 747-761. · Zbl 0709.62050
[9] Creel, M. D. and Kristensen, D. (2013). Indirect likelihood inference. Technical report, Autonomous Univ. Barcelona.
[10] Davison, A. C. (2003). Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics 11 . Cambridge Univ. Press, Cambridge. · Zbl 1044.62001
[11] Denham, D. A., Ponnudurai, T., Nelson, G. S., Guy, F. and Rogers, R. (1972). Studies with Brugia pahangi . I. Parasitological observations on primary infections of cats (Felis catus). International Journal for Parasitology 2 239-247.
[12] Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. Ser. B Stat. Methodol. 46 193-227. With discussion. · Zbl 0561.62035
[13] Drovandi, C. C. (2012). Bayesian algorithms with applications. Ph.D. thesis, Queensland Univ. Technology, Brisbane.
[14] Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput. Statist. Data Anal. 55 2541-2556. · Zbl 1464.62062
[15] Drovandi, C. C., Pettitt, A. N. and Faddy, M. J. (2011). Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C. Appl. Stat. 60 317-337.
[16] Drovandi, C. C., Pettitt, A. N. and Lee, A. (2015). Supplement to “Bayesian indirect inference using a parametric auxiliary model.” . · Zbl 1332.62088
[17] Gallant, A. R. and McCulloch, R. E. (2009). On the determination of general scientific models with application to asset pricing. J. Amer. Statist. Assoc. 104 117-131. · Zbl 1390.62334
[18] Gallant, A. R. and Tauchen, G. (1996). Which moments to match? Econometric Theory 12 657-681. · Zbl 04534738
[19] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81 2340-2361.
[20] Gleim, A. and Pigorsch, C. (2013). Approximate Bayesian computation with indirect summary statistics. Technical report, Univ. Bonn.
[21] Gourieroux, C., Monfort, A. and Renault, E. (1993). Indirect inference. J. Appl. Econometrics 8 S85-S118.
[22] Heggland, K. and Frigessi, A. (2004). Estimating functions in indirect inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 447-462. · Zbl 1062.62098
[23] Jiang, W. and Turnbull, B. (2004). The indirect method: Inference based on intermediate statistics-A synthesis and examples. Statist. Sci. 19 239-263. · Zbl 1100.62025
[24] Marjoram, P., Molitor, J., Plagnol, V. and Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100 15324-15328.
[25] Michael, E., Grenfell, B. T., Isham, V. S., Denham, D. A. and Bundy, D. A. P. (1998). Modelling variability in lymphatic filariasis: Macro filarial dynamics in the Brugia pahangi cat model. Proc. Roy. Soc. Lond. Ser. B 265 155-165.
[26] Møller, J., Pettitt, A. N., Reeves, R. and Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93 451-458. · Zbl 1158.62020
[27] Murray, I., Ghahramani, A. and MacKay, D. (2006). MCMC for doubly-intractable distributions. In Proceedings of the 22 nd Annual Conference on Uncertainty in Artificial Intelligence . AUAI Press, Arlington, VA.
[28] Rayner, G. D. and MacGillivray, H. L. (2002). Numerical maximum likelihood estimation for the \(g\)-and-\(k\) and generalized \(g\)-and-\(h\) distributions. Stat. Comput. 12 57-75. · Zbl 1247.62069
[29] Reeves, R. W. and Pettitt, A. N. (2005). A theoretical framework for approximate Bayesian computation. In Proceedings of the 20 th International Workshop on Statistical Modelling (A. R. Francis, K. M. Matawie, A. Oshlack and G. K. Smyth, eds.) 393-396. Univ. Western Sydney, Sydney, Australia.
[30] Riley, S., Donnelly, C. A. and Ferguson, N. M. (2003). Robust parameter estimation techniques for stochastic within-host macroparasite models. J. Theoret. Biol. 225 419-430.
[31] Scheffé, H. (1947). A useful convergence theorem for probability distributions. Ann. Math. Statistics 18 434-438. · Zbl 0032.29002
[32] Smith, A. A. Jr. (1993). Estimating nonlinear time-series models using simulated vector autoregressions. J. Appl. Econometrics 8 S63-S84.
[33] Suswillo, R. R., Denham, D. A. and McGreevy, P. B. (1982). The number and distribution of Brugia pahangi in cats at different times after a primary infection. Acta Trop. 39 151-156.
[34] Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466 1102-1104.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.