A parametric framework for the comparison of methods of very robust regression. (English) Zbl 1332.62245

Summary: There are several methods for obtaining very robust estimates of regression parameters that asymptotically resist 50% of outliers in the data. Differences in the behaviour of these algorithms depend on the distance between the regression data and the outliers. We introduce a parameter \(\lambda\) that defines a parametric path in the space of models and enables us to study, in a systematic way, the properties of estimators as the groups of data move from being far apart to close together. We examine, as a function of \(\lambda\), the variance and squared bias of five estimators and we also consider their power when used in the detection of outliers. This systematic approach provides tools for gaining knowledge and better understanding of the properties of robust estimators.


62J05 Linear regression; mixed models
62F35 Robustness and adaptive procedures (parametric inference)


robustbase; FSDA
Full Text: DOI arXiv Euclid


[1] Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. W. (1972). Robust Estimates of Location : Survey and Advances . Princeton Univ. Press, Princeton, NJ. · Zbl 0254.62001
[2] Atkinson, A. C. (1985). Plots , Transformations , and Regression . Oxford Univ. Press, Oxford. · Zbl 0582.62065
[3] Atkinson, A. and Riani, M. (2000). Robust Diagnostic Regression Analysis . Springer, New York. · Zbl 0964.62063
[4] Atkinson, A. C. and Riani, M. (2006). Distribution theory and simulations for tests of outliers in regression. J. Comput. Graph. Statist. 15 460-476.
[5] Atkinson, A. C. and Riani, M. (2007). Exploratory tools for clustering multivariate data. Comput. Statist. Data Anal. 52 272-285. · Zbl 1452.62028
[6] Atkinson, A. C., Riani, M. and Cerioli, A. (2010). The forward search: Theory and data analysis (with discussion). J. Korean Statist. Soc. 39 117-134. · Zbl 1294.62149
[7] Berrendero, J. R., Mendes, B. V. M. and Tyler, D. E. (2007). On the maximal bias functions of \(\mathit{MM}\)-estimates and constrained \(M\)-estimates of regression. Ann. Statist. 35 13-40. · Zbl 1114.62030
[8] Berrendero, J. R. and Zamar, R. H. (2001). Maximum bias curves for robust regression with non-elliptical regressors. Ann. Statist. 29 224-251. · Zbl 1029.62028
[9] Cook, R. D. and Hawkins, D. M. (1990). Comment on Rousseeuw and van Zomeren (1990). J. Amer. Statist. Assoc. 85 640-644.
[10] Cook, R. D., Hawkins, D. M. and Weisberg, S. (1993). Exact iterative computation of the robust multivariate minimum volume ellipsoid estimator. Statist. Probab. Lett. 16 213-218.
[11] Croux, C. and Rousseeuw, P. J. (1992). A class of high-breakdown scale estimators based on subranges. Comm. Statist. Theory Methods 21 1935-1951. · Zbl 0774.62035
[12] García-Escudero, L. A., Gordaliza, A., Mayo-Iscar, A. and San Martín, R. (2010). Robust clusterwise linear regression through trimming. Comput. Statist. Data Anal. 54 3057-3069. · Zbl 1284.62198
[13] Hampel, F. R. (1975). Beyond location parameters: Robust concepts and methods. Bulletin of the International Statistical Institute 46 375-382. · Zbl 0349.62029
[14] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics : The Approach Based on Influence Functions . Wiley, New York. · Zbl 0593.62027
[15] Hawkins, D. M., Bradu, D. and Kass, G. V. (1984). Location of several outliers in multiple-regression data using elemental sets. Technometrics 26 197-208.
[16] Hawkins, D. M. and Olive, D. J. (2002). Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm (with discussion). J. Amer. Statist. Assoc. 97 136-159. · Zbl 1073.62546
[17] Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics , 2nd ed. Wiley, Hoboken, NJ. · Zbl 1276.62022
[18] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics : Theory and Methods . Wiley, Chichester. · Zbl 1094.62040
[19] Martin, R. D., Yohai, V. J. and Zamar, R. H. (1989). Min-max bias robust regression. Ann. Statist. 17 1608-1630. · Zbl 0713.62068
[20] Morgenthaler, S. (2007). A survey of robust statistics. Stat. Methods Appl. 15 271-293. Erratum: 16 171-172. · Zbl 1181.62029
[21] Perrotta, D., Riani, M. and Torti, F. (2009). New robust dynamic plots for regression mixture detection. Adv. Data Anal. Classif. 3 263-279. · Zbl 1306.62079
[22] Pison, G., Van Aelst, S. and Willems, G. (2002). Small sample corrections for LTS and MCD. Metrika 55 111-123 (electronic). · Zbl 1320.62060
[23] Riani, M., Atkinson, A. C. and Cerioli, A. (2009). Finding an unknown number of multivariate outliers. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 447-466. · Zbl 1248.62091
[24] Riani, M., Atkinson, A. C. and Perrotta, D. (2014). Supplement to “A parametric framework for the comparison of methods of very robust regression.” . · Zbl 1332.62245
[25] Riani, M., Perrotta, D. and Torti, F. (2012). FSDA: A MATLAB toolbox for robust analysis and interactive data exploration. Chemometrics and Intelligent Laboratory Systems 116 17-32.
[26] Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871-880. · Zbl 0547.62046
[27] Rousseeuw, P. J. and Van Driessen, K. (2006). Computing LTS regression for large data sets. Data Min. Knowl. Discov. 12 29-45. · Zbl 05025258
[28] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection . Wiley, New York. · Zbl 0711.62030
[29] Tallis, G. M. (1963). Elliptical and radial truncation in normal populations. Ann. Math. Statist. 34 940-944. · Zbl 0142.16104
[30] Torti, F., Perrotta, D., Atkinson, A. C. and Riani, M. (2012). Benchmark testing of algorithms for very robust regression: FS, LMS and LTS. Comput. Statist. Data Anal. 56 2501-2512. · Zbl 1252.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.